Search Results

Now showing 1 - 9 of 9
  • Item
    Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: A shared electromagnetic origin
    (London : Nature Publishing Group, 2017) Rudenko, Anton; Colombier, Jean-Philippe; Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn; Itina, Tatiana E.
    Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements.
  • Item
    Advanced-Retarded Differential Equations in Quantum Photonic Systems
    (London : Nature Publishing Group, 2017) Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique
    We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip.
  • Item
    Prospects of target nanostructuring for laser proton acceleration
    (London : Nature Publishing Group, 2017) Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.
  • Item
    Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies
    (London : Nature Publishing Group, 2017) Zürch, M.; Jung, R.; Späth, C.; Tümmler, J.; Guggenmos, A.; Attwood, D.; Kleineberg, U.; Stiel, H.; Spielmann, C.
    Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12| ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.
  • Item
    Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser
    (London : Nature Publishing Group, 2017) Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria
    Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas.
  • Item
    Population density gratings induced by few-cycle optical pulses in a resonant medium
    (London : Nature Publishing Group, 2017) Arkhipov, R.M.; Pakhomov, A.V.; Arkhipov, M.V.; Babushkin, I.; Demircan, A.; Morgner, U.; Rosanov, N.N.
    Creation, erasing and ultrafast control of population density gratings using few-cycle optical pulses coherently interacting with resonant medium is discussed. In contrast to the commonly used schemes, here the pulses do not need to overlap in the medium, interaction between the pulses is mediated by excitation of polarization waves. We investigate the details of the dynamics arising in such ultrashort pulse scheme and develop an analytical theory demonstrating the importance of the phase memory effects in the dynamics.
  • Item
    Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses
    (London : Nature Publishing Group, 2017) Seuthe, Thomas; Mermillod-Blondin, Alexandre; Grehn, Moritz; Bonse, Jörn; Wondraczek, Lothar; Eberstein, Markus
    Structural relaxation phenomena in binary and multicomponent lithium silicate glasses were studied upon irradiation with femtosecond (fs) laser pulses (800 nm central wavelength, 130 fs pulse duration) and subsequent thermal annealing experiments. Depending on the annealing temperature, micro-Raman spectroscopy analyses evidenced different relaxation behaviours, associated to bridging and non-bridging oxygen structures present in the glass network. The results indicate that the mobility of lithium ions is an important factor during the glass modification with fs-laser pulses. Quantitative phase contrast imaging (spatial light interference microscopy) revealed that these fs-laser induced structural modifications are closely related to local changes in the refractive index of the material. The results establish a promising strategy for tailoring fs-laser sensitivity of glasses through structural mobility.
  • Item
    Spatially resolved investigation of all optical magnetization switching in TbFe alloys
    (London : Nature Publishing Group, 2017) Arora, Ashima; Mawass, Mohamad-Assaad; Sandig, Oliver; Luo, Chen; Ünal, Ahmet A.; Radu, Florin; Valencia, Sergio; Kronast, Florian
    Optical control of magnetization using femtosecond laser without applying any external magnetic field offers the advantage of switching magnetic states at ultrashort time scales. Recently, all-optical helicity-dependent switching (AO-HDS) has drawn a significant attention for potential information and data storage device applications. In this work, we employ element and magnetization sensitive photoemission electron microscopy (PEEM) to investigate the role of heating in AO-HDS for thin films of the rare-earth transition-metal alloy TbFe. Spatially resolved measurements in a 3-5 μm sized stationary laser spot demonstrate that AO-HDS is a local phenomenon in the vicinity of thermal demagnetization in a 'ring' shaped region. The efficiency of AO-HDS further depends on a local temperature profile around the demagnetized region and thermally activated domain wall motion. We also demonstrate that the thickness of the film determines the preferential switching direction for a particular helicity.
  • Item
    Cationic double K-hole pre-edge states of CS2 and SF6
    (London : Nature Publishing Group, 2017) Feifel, R.; Eland, J.H.D.; Carniato, S.; Selles, P.; Püttner, R.; Koulentianos, D.; Marchenko, T.; Journel, L.; Guillemin, R.; Goldsztejn, G.; Travnikova, O.; Ismail, I.; Miranda, B. Cunha de; Lago, A.F.; Céolin, D.; Lablanquie, P.; Penent, F.; Piancastelli, M.N.; Simon, M.
    Recent advances in X-ray instrumentation have made it possible to measure the spectra of an essentially unexplored class of electronic states associated with double inner-shell vacancies. Using the technique of single electron spectroscopy, spectra of states in CS2 and SF6 with a double hole in the K-shell and one electron exited to a normally unoccupied orbital have been obtained. The spectra are interpreted with the aid of a high-level theoretical model giving excellent agreement with the experiment. The results shed new light on the important distinction between direct and conjugate shake-up in a molecular context. In particular, systematic similarities and differences between pre-edge states near single core holes investigated in X-ray absorption spectra and the corresponding states near double core holes studied here are brought out.