Search Results

Now showing 1 - 2 of 2
  • Item
    Scalable, high power line focus diode laser for crystallizing of silicon thin films
    (Amsterdam : Elsevier, 2010) Lichtenstein, N.; Baettig, R.; Brunner, R.; Müller, J.; Valk, B.; Gawlik, A.; Bergmann, J.; Falk, F.
    We present the design and performance of a diode laser module producing a high intensity line focus at 808 nm for material processing. The design is based on a linear array of 7 laser bars and beam forming optics featuring a micro-optic homogenizer. The module delivers a total output power of 900 W at 140 A and peak intensity created in the focus area of 10.3 kW/cm2. Two systems with line length of 5 cm and 10 cm at a large working distance of 110 mm have been realized. The chosen concept allows scaling in length by joining multiple modules which is of interest for material processing in industrial applications. Application results from laser crystallization of amorphous silicon seed layers used in the fabrication of photovoltaic cells for solar panels are given.
  • Item
    Process flow to integrate nanostructures on silicon grass in surface micromachined systems
    (Bristol : IOP Publ., 2016) Mehner, H.; Müller, L.; Biermann, S.; Hänschke, F.; Hoffmann, M.
    The process flow to integrate metallic nanostructures in surface micromachining processes is presented. The nanostructures are generated by evaporation of microstructured silicon grass with metal. The process flow is based on the lift-off of a thin amorphous silicon layer deposited using a CVD process. All steps feature a low temperature load beneath 120 °C and high compatibility with many materials as only well-established chemicals are used. As a result metallic nanostructures usable for optical applications can be generated as part of multilayered microsystems fabricated in surface micromachining.