Search Results

Now showing 1 - 10 of 13
  • Item
    Unusual spin pseudogap behavior in the spin web lattice Cu3TeO6 probed by 125Te nuclear magnetic resonance
    (College Park, MD : APS, 2021) Baek, Seung-Ho; Yeo, Hyeon Woo; Park, Jena; Choi, Kwang-Yong; Büchner, Bernd
    We present a 125Te nuclear magnetic resonance (NMR) study in the three-dimensional spin web lattice Cu3TeO6 which harbors topological magnons. The 125Te NMR spectra and the Knight-shift K as a function of temperature show a drastic change at TS∼40K much lower than the Néel ordering temperature TN∼61K, providing evidence for the first-order structural phase transition within the magnetically ordered state. Most remarkably, the temperature dependence of the spin-lattice relaxation rate T−11 unravels spin-gap-like magnetic excitations, which sharply sets in at T∗∼75K, the temperature well above TN. The spin-gap behavior may be understood by weakly dispersive optical magnon branches of high-energy spin excitations originating from the unique corner-sharing Cu hexagon spin-1/2 network with low coordination number.
  • Item
    Robust metastable skyrmions with tunable size in the chiral magnet FePtMo3 N
    (Woodbury, NY : Inst., 2020) Sukhanov, A.S.; Heinemann, A.; Kautzsch, L.; Bocarsly, J.D.; Wilson, S.D.; Felser, C.; Inosov, D.S.
    The synthesis of new materials that can host magnetic skyrmions and their thorough experimental and theoretical characterization are essential for future technological applications. The β-Mn-type compound FePtMo3N is one such novel material that belongs to the chiral space group P4132, where the antisymmetric Dzyaloshinskii-Moriya interaction is allowed due to the absence of inversion symmetry. We report the results of small-angle neutron scattering (SANS) measurements of FePtMo3N and demonstrate that its magnetic ground state is a long-period spin helix with a Curie temperature of 222 K. The magnetic field-induced redistribution of the SANS intensity showed that the helical structure transforms to a lattice of skyrmions at ∼13 mT at temperatures just below TC. Our key observation is that the skyrmion state in FePtMo3N is robust against field cooling down to the lowest temperatures. Moreover, once the metastable state is prepared by field cooling, the skyrmion lattice exists even in zero field. Furthermore, we show that the skyrmion size in FePtMo3N exhibits high sensitivity to the sample temperature and can be continuously tuned between 120 and 210 nm. This offers different prospects in the control of topological properties of chiral magnets. © 2020 authors. Published by the American Physical Society.
  • Item
    Magnetic flux-trapping of anisotropic-grown Y-Ba-Cu-O bulk superconductors during and after pulsed-field magnetizing processes
    (Milton Park : Taylor & Francis, 2014) Oka, T.; Yamada, Y.; Horiuchi, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.
    The magnetic flux penetration into the melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were precisely evaluated during and after the pulsed field magnetization processes operated at 30 K. The bulk magnets were carefully fabricated by the cold seeding method with use of a single and a pair of seed crystals composed of the Nd-Ba-Cu-O thin films. These seed crystals were put on the top surfaces of the precursors to let the large grains grow during the heat treatments. We observed the flux penetrations which occurred in the lower applied-field regions at around 3.1 T for the samples bearing the twin seeds than those of the single-seeded crystals at around 3.8 T. This means that the magnetic fluxes are capable of invading into the twin-seeded samples more easily than the single-seeds. It suggests that the anisotropic grain growths of parallel and normal to the rows of seed crystals affects the variations of Jc values with different distributions of the pinning centers, results in the preferential paths for the invading magnetic fluxes.
  • Item
    Two-dimensional ferromagnetic extension of a topological insulator
    (College Park, MD : APS, 2023) Kagerer, P.; Fornari, C. I.; Buchberger, S.; Tschirner, T.; Veyrat, L.; Kamp, M.; Tcakaev, A. V.; Zabolotnyy, V.; Morelhão, S. L.; Geldiyev, B.; Müller, S.; Fedorov, A.; Rienks, E.; Gargiani, P.; Valvidares, M.; Folkers, L. C.; Isaeva, A.; Büchner, B.; Hinkov, V.; Claessen, R.; Bentmann, H.; Reinert, F.
    Inducing a magnetic gap at the Dirac point of the topological surface state (TSS) in a three-dimensional (3D) topological insulator (TI) is a route to dissipationless charge and spin currents. Ideally, magnetic order is present only at the surface, as through proximity of a ferromagnetic (FM) layer. However, experimental evidence of such a proximity-induced Dirac mass gap is missing, likely due to an insufficient overlap of TSS and the FM subsystem. Here, we take a different approach, namely ferromagnetic extension (FME), using a thin film of the 3D TI Bi2Te3, interfaced with a monolayer of the lattice-matched van der Waals ferromagnet MnBi2Te4. Robust 2D ferromagnetism with out-of-plane anisotropy and a critical temperature of Tc≈15 K is demonstrated by x-ray magnetic dichroism and electrical transport measurements. Using angle-resolved photoelectron spectroscopy, we observe the opening of a sizable magnetic gap in the 2D FM phase, while the surface remains gapless in the paramagnetic phase above Tc. Ferromagnetic extension paves the way to explore the interplay of strictly 2D magnetism and topological surface states, providing perspectives for realizing robust quantum anomalous Hall and chiral Majorana states.
  • Item
    Coupling of lattice, spin, and intraconfigurational excitations of Eu3+ in Eu2ZnIrO6
    (Washington, DC : American Association for the Advancement of Science, 2020) Singh, Birender; Vogl, M.; Wurmehl, S.; Aswartham, S.; Büchner, B.; Kumar, Pradeep
    In Eu2ZnIrO6, effectively two atoms are active; i.e., Ir is magnetically active, which results in complex magnetic ordering within the Ir sublattice at low temperature. On the other hand, although Eu is a Van Vleck paramagnet, it is active in the electronic channels involving 4f6 crystal-field split levels. Phonons, quanta of lattice vibration involving vibration of atoms in the unit cell, are intimately coupled with both magnetic and electronic degrees of freedom (DOF). Here, we report a comprehensive study focusing on the phonons as well as intraconfigurational excitations in double-perovskite Eu2ZnIrO6. Our studies reveal strong coupling of phonons with the underlying magnetic DOF reflected in the renormalization of the phonon self-energy parameters well above the spin-solid phase (TN∼12K) until temperature as high as ∼3TN evidences broken spin rotational symmetry deep into the paramagnetic phase. In particular, all the observed first-order phonon modes show softening of varying degree below ∼3TN, and low-frequency phonons become sharper, while the high-frequency phonons show broadening attributed to the additional available magnetic damping channels. We also observed a large number of high-energy modes, 39 in total, attributed to the electronic transitions between 4f levels of the rare-earth Eu3+ ion and these modes shows anomalous temperature evolution as well as mixing of the crystal-field split levels attributed to the strong coupling of electronic and lattice DOF.
  • Item
    Systematic tuning of segmented magnetic nanowires into three-dimensional arrays of 'bits'
    (London : RSC Publishing, 2017) Bochmann, S.; Fernandez-Pacheco, A.; Mačković, M.; Neff, A.; Siefermann, K.R.; Spiecker, E.; Cowburn, R.P.; Bachmann, J.
    A method is presented for the preparation of a three-dimensional magnetic data storage material system. The major ingredients are an inert nanoporous matrix prepared by anodization and galvanic plating of magnetic and non-magnetic metals in wire shape inside the cylindrical pores. The individual nanomagnets consist of a nickel-cobalt alloy, the composition of which is tuned systematically by adjusting the electrolytic bath composition at one optimal applied potential. The lowest magnetocrystalline anisotropy is obtained at the composition Ni60Co40, as quantified by superconducting quantum interference device magnetometry. Wires of this composition experience a pinning-free propagation of magnetic domain walls, as determined by single-wire magneto-optical Kerr effect magnetometry. Adding copper into the electrolyte allows one to generate segments of Ni60Co40 separated by non-magnetic copper. The segment structure is apparent in individual nanowires imaged by scanning electron microscopy, UV-photoelectron emission microscopy, and transmission electron microscopy. The single-domain structure of the wire segments is evidenced by magnetic force microscopy.
  • Item
    Field-Angle-Resolved Magnetic Excitations as a Probe of Hidden-Order Symmetry in CeB6
    (College Park, Md. : APS, 2020) Portnichenko, P.Y.; Akbari, A.; Nikitin, S.E.; Cameron, A.S.; Dukhnenko, A.V.; Filipov, V.B.; Shitsevalova, N.Yu.; Čermák, P.; Radelytskyi, I.; Schneidewind, A.; Ollivier, J.; Podlesnyak, A.; Huesges, Z.; Xu, J.; Ivanov, A.; Sidis, Y.; Petit, S.; Mignot, J.-M.; Thalmeier, P.; Inosov, D.S.
    In contrast to magnetic order formed by electrons' dipolar moments, ordering phenomena associated with higher-order multipoles (quadrupoles, octupoles, etc.) are more difficult to characterize because of the limited choice of experimental probes that can distinguish different multipolar moments. The heavy-fermion compound CeB6 and its La-diluted alloys are among the best-studied realizations of the long-range-ordered multipolar phases, often referred to as "hidden order."Previously, the hidden order in phase II was identified as primary antiferroquadrupolar and field-induced octupolar order. Here, we present a combined experimental and theoretical investigation of collective excitations in phase II of CeB6. Inelastic neutron scattering (INS) in fields up to 16.5 T reveals a new high-energy mode above 14 T in addition to the low-energy magnetic excitations. The experimental dependence of their energy on the magnitude and angle of the applied magnetic field is compared to the results of a multipolar interaction model. The magnetic excitation spectrum in a rotating field is calculated within a localized approach using the pseudospin representation for the Γ8 states. We show that the rotating-field technique at fixed momentum can complement conventional INS measurements of the dispersion at a constant field and holds great promise for identifying the symmetry of multipolar order parameters and the details of intermultipolar interactions that stabilize hidden-order phases. © 2020 authors. Published by the American Physical Society.
  • Item
    Magnetic warping in topological insulators
    (College Park, MD : APS, 2022) Naselli, Gabriele; Moghaddam, Ali G.; Di Napoli, Solange; Vildosola, Verónica; Fulga, Ion Cosma; van den Brink, Jeroen; Facio, Jorge I.
    We analyze the electronic structure of topological surface states in the family of magnetic topological insulators MnBi2nTe3n+1. We show that, at natural-cleavage surfaces, the Dirac cone warping changes its symmetry from hexagonal to trigonal at the magnetic ordering temperature. In particular, an energy splitting develops between the surface states of the same band index but opposite surface momenta upon formation of the long-range magnetic order. As a consequence, measurements of such energy splittings constitute a simple protocol to detect the magnetic ordering via the surface electronic structure, alternative to the detection of the surface magnetic gap. Interestingly, while the latter signals a nonzero surface magnetization, the trigonal warping predicted here is, in addition, sensitive to the direction of the surface magnetic flux. Our results may be particularly useful when the Dirac point is buried in the projection of the bulk states, caused by certain terminations of the crystal or in hole-doped systems, since in both situations the surface magnetic gap itself is not accessible in photoemission experiments.
  • Item
    Kitaev magnetism and fractionalized excitations in double perovskite Sm2ZnIrO6
    (College Park, ML : American Physical Society, 2020) Singh, Birender; Vogl, M.; Wurmehl, S.; Aswartham, S.; Büchner, B.; Kumar, Pradeep
    The quest for Kitaev spin liquids in particular three-dimensional solids is a long sought goal in condensed matter physics, as these states may give rise to exotic new types of quasiparticle excitations carrying fractional quantum numbers, namely Majorana fermionic excitations. Here we report the experimental signature of this characteristic feature of the Kitaev spin liquid via Raman measurements. Sm2ZnIrO6 is a strongly spin-orbit-coupled Mott insulator where Jeff=1/2 controls the physics, which provides striking evidence for this characteristic feature of the Kitaev spin liquid. As the temperature is lowered, we find that the spin excitations form a continuum in contrast to the conventional sharp modes expected in ordered antiferromagnets. Our observation of a broad magnetic continuum and anomalous renormalization of the phonon self-energy parameters shows the existence of fractionalization excitations in the double-perovskite structure, as theoretically conjectured in a Kitaev-Heisenberg geometrically frustrated double-perovskite system.
  • Item
    Magnetically induced reorientation of martensite variants in constrained epitaxial Ni-Mn-Ga films grown on MgO(001)
    (Milton Park : Taylor & Francis, 2008) Thomas, M.; Heczko, O.; Buschbeck, J.; Rößler, U.K.; McCord, J.; Scheerbaum, N.; Schultz, L.; Fähler, S.
    Magnetically induced reorientation (MIR) is observed in epitaxial orthorhombic Ni-Mn-Ga films. Ni-Mn-Ga films have been grown epitaxially on heated MgO(001) substrates in the cubic austenite state. The unit cell is rotated by 45° relative to the MgO cell. The growth, structure texture and anisotropic magnetic properties of these films are described. The crystallographic analysis of the martensitic transition reveals variant selection dominated by the substrate constraint. The austenite state has low magnetocrystalline anisotropy. In the martensitic state, the magnetization curves reveal an orthorhombic symmetry having three magnetically non-equivalent axes. The existence of MIR is deduced from the typical hysteresis within the first quadrant in magnetization curves and independently by texture measurement without and in the presence of a magnetic field probing micro structural changes. An analytical model is presented, which describes MIR in films with constrained overall extension by the additional degree of freedom of an orthorhombic structure compared to the tetragonal structure used in the standard model.