Search Results

Now showing 1 - 10 of 10
  • Item
    High-field ESR studies of the quantum spin magnet CaCu2O 3
    (Milton Park : Taylor & Francis, 2006) Goiran, M.; Costes, M.; Broto, J.M.; Chou, F.C.; Klingeler, R.; Arushanov, E.; Drechsler, S.-L.; Büchner, B.; Kataev, V.
    We report an electron spin resonance (ESR) study of the s = 1/2 Heisenberg pseudo-ladder magnet CaCu2O3 in pulsed magnetic fields up to 40 T. At sub-terahertz frequencies we observe an ESR signal originating from a small amount of uncompensated spins residing presumably at the imperfections of the strongly antiferromagnetically correlated host spin lattice. The data give evidence that these few per cent of 'extra' spin states are coupled strongly to the bulk spins and are involved in the antiferromagnetic (AF) ordering at TN = 25 K. By mapping the frequency/resonance field diagram we have determined a small gap for magnetic excitations below TN of the order of ~0.3–0.8 meV. Such a small value of the gap explains the occurrence of the spin-flop transition in CaCu2O3 at weak magnetic fields μ0Hsf ~ 3 T. Qualitative changes of the ESR response with the increasing field strength give indications that strong magnetic fields reduce the AF correlations and may even suppress the long-range magnetic order in CaCu2O3. ESR data support scenarios with a significant role of the 'extra' spin states for the properties of low-dimensional quantum magnets.
  • Item
    Rolled-up magnetic microdrillers: Towards remotely controlled minimally invasive surgery
    (Cambridge [u.a.] : Royal Society of Chemistry, 2013) Xi, W.; Solovev, A.A.; Ananth, A.N.; Gracias, D.H.; Sanchez, S.; Schmidt, O.G.
    Self-folded magnetic microtools with sharp ends are directed at enabling drilling and related incision operations of tissues, ex vivo, in a fluid with a viscosity similar to that of blood. These microtools change their rotation from a horizontal to a vertical one when they are immersed into a rotational magnetic field. Novel self-assembly paradigms with magnetic materials can enable the creation of remotely controlled and mass-produced tools for potential applications in minimally invasive surgery.
  • Item
    Robust metastable skyrmions with tunable size in the chiral magnet FePtMo3 N
    (Woodbury, NY : Inst., 2020) Sukhanov, A.S.; Heinemann, A.; Kautzsch, L.; Bocarsly, J.D.; Wilson, S.D.; Felser, C.; Inosov, D.S.
    The synthesis of new materials that can host magnetic skyrmions and their thorough experimental and theoretical characterization are essential for future technological applications. The β-Mn-type compound FePtMo3N is one such novel material that belongs to the chiral space group P4132, where the antisymmetric Dzyaloshinskii-Moriya interaction is allowed due to the absence of inversion symmetry. We report the results of small-angle neutron scattering (SANS) measurements of FePtMo3N and demonstrate that its magnetic ground state is a long-period spin helix with a Curie temperature of 222 K. The magnetic field-induced redistribution of the SANS intensity showed that the helical structure transforms to a lattice of skyrmions at ∼13 mT at temperatures just below TC. Our key observation is that the skyrmion state in FePtMo3N is robust against field cooling down to the lowest temperatures. Moreover, once the metastable state is prepared by field cooling, the skyrmion lattice exists even in zero field. Furthermore, we show that the skyrmion size in FePtMo3N exhibits high sensitivity to the sample temperature and can be continuously tuned between 120 and 210 nm. This offers different prospects in the control of topological properties of chiral magnets. © 2020 authors. Published by the American Physical Society.
  • Item
    Magnetic flux-trapping of anisotropic-grown Y-Ba-Cu-O bulk superconductors during and after pulsed-field magnetizing processes
    (Milton Park : Taylor & Francis, 2014) Oka, T.; Yamada, Y.; Horiuchi, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.
    The magnetic flux penetration into the melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were precisely evaluated during and after the pulsed field magnetization processes operated at 30 K. The bulk magnets were carefully fabricated by the cold seeding method with use of a single and a pair of seed crystals composed of the Nd-Ba-Cu-O thin films. These seed crystals were put on the top surfaces of the precursors to let the large grains grow during the heat treatments. We observed the flux penetrations which occurred in the lower applied-field regions at around 3.1 T for the samples bearing the twin seeds than those of the single-seeded crystals at around 3.8 T. This means that the magnetic fluxes are capable of invading into the twin-seeded samples more easily than the single-seeds. It suggests that the anisotropic grain growths of parallel and normal to the rows of seed crystals affects the variations of Jc values with different distributions of the pinning centers, results in the preferential paths for the invading magnetic fluxes.
  • Item
    Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers
    (Bristol : Institute of Physics Publishing, 2019) Simmendinger, J.; Hanisch, J.; Bihler, M.; Ionescu, A.M.; Weigand, M.; Sieger, M.; Hühne, R.; Rijckaert, H.; Van Driessche, I.; Schütz, G.; Albrecht, J.
    We studied the impact of soft ferromagnetic permalloy (Py) on the shielding currents in a strong-pinning superconductor - YBa2Cu3O7-δ with Ba2Y(Nb/Ta)O6 nano-precipitates - by means of scanning transmission x-ray microscopy. Typically and in particular when in the thin film limit, superconductor/ferromagnet (SC/FM) bilayers exhibit isotropic properties of the flux line ensemble at all temperatures. However, in elements with small aspect ratio a significant anisotropy in flux penetration is observed. We explain this effect by local in-plane fields arising from anisotropic magnetic stray fields originated by the ferromagnet. This leads to direction-dependent motion of magnetic vortices inside the SC/FM bilayer. Our results demonstrate that small variations of the magnetic properties can have huge impact on the superconductor.
  • Item
    Spin-glass state and reversed magnetic anisotropy induced by Cr doping in the Kitaev magnet α-RuCl3
    (College Park, MD : American Physical Society, 2019) Bastien, G.; Roslova, M.; Haghighi, M.H.; Mehlawat, K.; Hunger, J.; Isaeva, A.; Doert, T.; Vojta, M.; Büchner, B.; Wolter, A.U.B.
    Magnetic properties of the substitution series Ru1-xCrxCl3 were investigated to determine the evolution from the anisotropic Kitaev magnet α-RuCl3 with Jeff=1/2 magnetic Ru3+ ions to the isotropic Heisenberg magnet CrCl3 with S=3/2 magnetic Cr3+ ions. Magnetization measurements on single crystals revealed a reversal of the magnetic anisotropy under doping, which we argue to arise from the competition between anisotropic Kitaev and off-diagonal interactions on the Ru-Ru links and approximately isotropic Cr-Ru and isotropic Cr-Cr interactions. In addition, combined magnetization, ac susceptibility, and specific-heat measurements clearly show the destabilization of the long-range magnetic order of α-RuCl3 in favor of a spin-glass state of Ru1-xCrxCl3 for a low doping of x≤0.1. The corresponding freezing temperature as a function of Cr content shows a broad maximum around x ≤ 0.45.
  • Item
    Magnetically induced reorientation of martensite variants in constrained epitaxial Ni-Mn-Ga films grown on MgO(001)
    (Milton Park : Taylor & Francis, 2008) Thomas, M.; Heczko, O.; Buschbeck, J.; Rößler, U.K.; McCord, J.; Scheerbaum, N.; Schultz, L.; Fähler, S.
    Magnetically induced reorientation (MIR) is observed in epitaxial orthorhombic Ni-Mn-Ga films. Ni-Mn-Ga films have been grown epitaxially on heated MgO(001) substrates in the cubic austenite state. The unit cell is rotated by 45° relative to the MgO cell. The growth, structure texture and anisotropic magnetic properties of these films are described. The crystallographic analysis of the martensitic transition reveals variant selection dominated by the substrate constraint. The austenite state has low magnetocrystalline anisotropy. In the martensitic state, the magnetization curves reveal an orthorhombic symmetry having three magnetically non-equivalent axes. The existence of MIR is deduced from the typical hysteresis within the first quadrant in magnetization curves and independently by texture measurement without and in the presence of a magnetic field probing micro structural changes. An analytical model is presented, which describes MIR in films with constrained overall extension by the additional degree of freedom of an orthorhombic structure compared to the tetragonal structure used in the standard model.
  • Item
    Crossover of skyrmion and helical modulations in noncentrosymmetric ferromagnets
    (Bristol : Institute of Physics Publishing, 2018) Leonov, A.O.; Bogdanov, A.N.
    The coupling between angular (twisting) and longitudinal modulations arising near the ordering temperature of noncentrosymmetric ferromagnets strongly influences the structure of skyrmion states and their evolution in an applied magnetic field. In the precursor states of cubic helimagnets, a continuous transformation of skyrmion lattices into the saturated state is replaced by the first-order processes accompanied by the formation of multidomain states. Recently the effects imposed by dominant longitudinal modulations have been reported in bulk MnSi and FeGe. Similar phenomena can be observed in the precursor regions of cubic helimagnet epilayers and in easy-plane chiral ferromagnets (e.g. in the hexagonal helimagnet CrNb3S6).
  • Item
    Coupling of chiralities in spin and physical spaces: The Möbius ring as a case study
    (College Park : American Physical Society, 2015) Pylypovskyi, Oleksandr V.; Kravchuk, Volodymyr P.; Sheka, Denis D.; Makarov, Denys; Schmidt, Oliver G.; Gaididei, Yuri
    We show that the interaction of the magnetic subsystem of a curved magnet with the magnet curvature results in the coupling of a topologically nontrivial magnetization pattern and topology of the object. The mechanism of this coupling is explored and illustrated by an example of a ferromagnetic Möbius ring, where a topologically induced domain wall appears as a ground state in the case of strong easy-normal anisotropy. For the Möbius geometry, the curvilinear form of the exchange interaction produces an additional effective Dzyaloshinskii-like term which leads to the coupling of the magnetochirality of the domain wall and chirality of the Möbius ring. Two types of domain walls are found, transversal and longitudinal, which are oriented across and along the Möbius ring, respectively. In both cases, the effect of magnetochirality symmetry breaking is established. The dependence of the ground state of the Möbius ring on its geometrical parameters and on the value of the easy-normal anisotropy is explored numerically.
  • Item
    Phase transition and anomalous low temperature ferromagnetic phase in Pr 0.6Sr 0.4MnO 3 single crystals
    (New York, NY : Springer Science + Business Media B.V., 2009) Rößler, S.; Harikrishnan, S.; Naveen Kumar, C.M.; Bhat, H.L.; Elizabeth, S.; Rößler, U.K.; Steglich, F.; Wirth, S.
    We report on the magnetic and electrical properties of Pr 0.6Sr 0.4MnO 3 single crystals. This compound undergoes a continuous paramagnetic-ferromagnetic transition with a Curie temperature T C301 K and a first-order structural transition at T S64 K. At T S, the magnetic susceptibility exhibits an abrupt jump, and a corresponding small hump is seen in the resistivity. The critical behavior of the static magnetization and the temperature dependence of the resistivity are consistent with the behavior expected for a nearly isotropic ferromagnet with short-range exchange belonging to the Heisenberg universality class. The magnetization (M-H) curves below T S are anomalous in that the virgin curve lies outside the subsequent M-H loops. The hysteretic structural transition at T S as well as the irreversible magnetization processes below T S can be explained by phase separation between a high-temperature orthorhombic and a low-temperature monoclinic ferromagnetic phase.