Search Results

Now showing 1 - 7 of 7
  • Item
    Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region - an overview of the airborne in situ and lidar measurements during SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Weinzierl, Bernadett; Sauer, Daniel; Esselborn, Michael; Petzold, Andreas; Veira, Andreas; Rose, Maximilian; Mund, Susanne; Wirth, Martin; Ansmann, Albert; Tesche, Matthias; Gross, Silke; Freudenthaler, Volker
    In the framework of the Saharan Mineral Dust Experiment (SAMUM) airborne High Spectral Resolution Lidar and in situ measurements of the particle size, aerosol mixing state and absorption coefficient were conducted. Here, the properties of mineral dust and tropical biomass burning layers in the Cape Verde region in January/February 2008 are investigated and compared with the properties of fresh dust observed in May/June 2006 close the Sahara. In the Cape Verde area, we found a complex stratification with dust layers covering the altitude range below 2 km and biomass burning layers aloft. The aerosol type of the individual layers was classified based on depolarization and lidar ratios and, in addition, on in situ measured Ångström exponents of absorption åap. The dust layers had a depth of 1.3 ± 0.4 km and showed a median åap of 3.95. The median effective diameter Deff was 2.5 μm and the dust layers over Cape Verde yielded clear signals of aging: large particles were depleted due to gravitational settling and the accumulation mode diameter was shifted towards larger sizes as a result of coagulation. The tropical biomass layers had a depth of 2.0 ± 1.1 km and were characterized by a median åap of 1.34. They always contained a certain amount of large dust particles and showed a median Deff of 1.1 μm and a fine mode Deff,fine of 0.33. The dust and biomass burning layers had a median aerosol optical depth (AOD) of 0.23 and 0.09, respectively. The median contributions to the AOD of the total atmospheric column below 10 km were 75 and 37%, respectively.
  • Item
    Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2
    (Milton Park : Taylor & Francis, 2017) Groß, Silke; Tesche, Matthias; Freudenthaler, Volker; Toledano, Carlos; Wiegner, Matthias; Ansmann, Albert; Althausen, Dietrich; Seefeldner, Meinhard
    The particle linear depolarization ratio δp of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols from southern West Africa and Saharan dust was determined at three wavelengths with three lidar systems during the SAharan Mineral dUst experiMent 2 at the airport of Praia, Cape Verde, between 22 January and 9 February 2008. The lidar ratio Sp of these major types of tropospheric aerosols was analysed at two wavelengths. For Saharan dust, we find wavelength dependent mean particle linear depolarization ratios δp of 0.24–0.27 at 355 nm, 0.29–0.31 at 532 nm and 0.36–0.40 at 710 nm, and wavelength independent mean lidar ratios Sp of 48–70 sr. Mixtures of biomass-burning aerosols and dust show wavelength independent values of δp and Sp between 0.12–0.23 and 57–98 sr, respectively. The mean values of marine aerosols range independent of wavelength for δp from 0.01 to 0.03 and for Sp from 14 to 24 sr.
  • Item
    Dust mobilization and aerosol transport from West Africa to Cape Verde - a meteorological overview of SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Knippertz, Peter; Tesche, Matthias; Heinold, Bernd; Kandler, Konrad; Toledano, Carlos; Esselborn, Michael
    The second field campaign of the SAharan Mineral dUst experiMent (SAMUM-2) was performed between 15 January and 14 February 2008 at the airport of Praia, Cape Verde, and provided valuable information to study the westward transport of Saharan dust and the mixing with biomass-burning smoke and sea-salt aerosol. Here lidar, meteorological, and particle measurements at Praia, together with operational analyses, trajectories, and satellite and synoptic station data are used to give an overview of the meteorological conditions and to place other SAMUM-2 measurements into a large-scale context. It is demonstrated that wintertime dust conditions at Cape Verde are closely related to the movement and intensification of mid-latitude high-pressure systems and the associated pressure gradients at their southern flanks. These cause dust emission over Mauritania, Mali, and Niger, and subsequent westward transport to Cape Verde within about 1–5 d. Dust emissions often peak around midday, suggesting a relation to daytime mixing of momentum from nocturnal low-level jets to the surface. The dust layer over Cape Verde is usually restricted to the lowest 1.5 km of the atmosphere. During periods with near-surface wind speeds about 5.5 ms−1, a maritime aerosol layer develops which often mixes with dust from above. On most days, the middle levels up to about 5 km additionally contain smoke that can be traced back to sources in southernWest Africa. Above this layer, clean air masses are transported to Cape Verde with the westerly flow at the southern side of the subtropical jet. The penetration of extra-tropical disturbances to low latitudes can bring troposphere-deep westerly flow and unusually clean conditions to the region.
  • Item
    Doppler lidar studies of heat island effects on vertical mixing of aerosols during SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Engelmann, Ronny; Ansmann, Albert; Horn, Stefan; Seifert, Patric; Althausen, Dietrich; Tesche, Matthias; Esselborn, Michael; Fruntke, Julia; Lieke, Kirsten; Freudenthaler, Volker; Gross, Silke
    A wind Doppler lidar was deployed next to three aerosol lidars during the SAMUM–2 campaign on the main island of Cape Verde. The effects of the differential heating of the island and the surrounding ocean and the orographic impact of the capital island Santiago and the small island on its luv side, Maio, are investigated. Horizontal and vertical winds were measured in the disturbed maritime boundary layer and compared to local radiosoundings. Lidar measurements from the research aircraft Falcon and a 3-D Large Eddy Simulation (LES) model were used in addition to study the heating effects on the scale of the islands. Indications are found that these effects can widely control the downward mixing from greater heights to the surface of African aerosols, mainly Saharan dust and biomass-burning smoke, which were detected in a complex layering over the Cape Verde region.
  • Item
    Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Müller, Detlef; Gross, Silke; Ansmann, Albert; Althausen, Dietrich; Freudenthaler, Volker; Weinzierl, Bernadett; Veira, Andreas; Petzold, Andreas
    Lidar measurements of mixed dust/smoke plumes over the tropical Atlantic ocean were carried out during the winter campaign of SAMUM-2 at Cape Verde. Profiles of backscatter and extinction coefficients, lidar ratios, and Ångstr¨om exponents related to pure biomass-burning aerosol from southern West Africa were extracted from these observations. Furthermore, these findings were used as input for an inversion algorithm to retrieve microphysical properties of pure smoke. Seven measurement days were found suitable for the procedure of aerosol-type separation and successive inversion of optical data that describe biomass-burning smoke. We inferred high smoke lidar ratios of 87 ± 17 sr at 355 nm and 79 ± 17 sr at 532 nm. Smoke lidar ratios and Ångstr¨om exponents are higher compared to the ones for the dust/smoke mixture. These numbers indicate higher absorption and smaller sizes for pure smoke particles compared to the dust/smoke mixture. Inversion of the smoke data set results in mean effective radii of 0.22 ± 0.08 μm with individual results varying between 0.10 and 0.36 μm. The single-scattering albedo for pure biomass-burning smoke was found to vary between 0.63 and 0.89 with a very low mean value of 0.75 ± 0.07. This is in good agreement with findings of airborne in situ measurements which showed values of 0.77 ± 0.03. Effective radii from the inversion were similar to the ones found for the fine mode of the in situ size distributions.
  • Item
    Regional modelling of Saharan dust and biomass-burning smoke, Part 2: Direct radiative forcing and atmospheric dynamic response
    (Milton Park : Taylor & Francis, 2017) Heinold, Bernd; Tegen, Ina; Bauer, Stefan; Wendisch, Manfred
    The direct radiative forcing and dynamic atmospheric response due to Saharan dust and biomass-burning aerosol particles are presented for a case study during the SAMUM-2 field campaign in January and February 2008. The regional model system COSMO-MUSCAT is used. It allows online interaction of the computed dust and smoke load with the solar and terrestrial radiation and with the model dynamics. Model results of upward solar irradiances are evaluated against airborne radiation measurements in the Cape Verde region. The comparison shows a good agreement for the case of dust and smoke mixture. Dust and smoke particles influence the atmospheric dynamics by changing the radiative heating rates. The related pressure perturbations modify local and synoptic scale air-flow patterns. In the radiative feedback simulations, the Hadley circulation is enhanced and convergence zones occur along the Guinea coast. Thus, the smoke particles spread more than 5◦ further north and the equatorward transport is reduced. Within the convergence zones, Saharan dust and biomass-burning material are more effectively advected towards the Cape Verdes. Given the model uncertainties, the agreement between the modelled and observed aerosol distribution is locally improved when aerosol–radiation interaction is considered.
  • Item
    Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: What have we learned?
    (Milton Park : Taylor & Francis, 2011) Ansmann, Albert; Petzold, Andreas; Kandler, Konrad; Tegen, Ina; Wendisch, Manfred; Müller, Detlef; Weinzierl, Bernadett; Müller, Thomas; Heintzenberg, Jost
    Two comprehensive field campaigns were conducted in 2006 and 2008 in the framework of the Saharan Mineral Dust Experiment (SAMUM) project. The relationship between chemical composition, shape morphology, size distribution and optical effects of the dust particles was investigated. The impact of Saharan dust on radiative transfer and the feedback of radiative effects upon dust emission and aerosol transport were studied. Field observations (ground-based, airborne and remote sensing) and modelling results were compared within a variety of dust closure experiments with a strong focus on vertical profiling. For the first time, multiwavelength Raman/polarization lidars and an airborne high spectral resolution lidar were involved in major dust field campaigns and provided profiles of the volume extinction coefficient of the particles at ambient conditions (for the full dust size distribution), of particle-shape-sensitive optical properties at several wavelengths, and a clear separation of dust and smoke profiles allowing for an estimation of the single-scattering albedo of the biomass-burning aerosol. SAMUM–1 took place in southern Morocco close to the Saharan desert in the summer of 2006, whereas SAMUM–2 was conducted in Cape Verde in the outflow region of desert dust and biomass-burning smoke from western Africa in the winter of 2008. This paper gives an overview of the SAMUM concept, strategy and goals, provides snapshots (highlights) of SAMUM–2 observations and modelling efforts, summarizes main findings of SAMUM–1 and SAMUM–2 and finally presents a list of remaining problems and unsolved questions.