Search Results

Now showing 1 - 10 of 381
  • Item
    Ultrafast OH-stretching frequency shifts of hydrogen-bonded 2-naphthol photoacid-base complexes in solution
    (Les Ulis : EDP Sciences, 2013) Prémont-Schwarz, M.; Xiao, D.; Sekharan, S.; Batista, V.S.; Nibbering, E.T.J.
    We characterize the transient solvent-dependent OH-stretching frequency shifts of photoacid 2-naphthol hydrogen-bonded with CH3CN in the S0- and S1-states using a combined experimental and theoretical approach, and disentangle specific hydrogen-bonding contributions from nonspecific dielectric response.
  • Item
    Endurance of quantum coherence due to particle indistinguishability in noisy quantum networks
    (London : Nature Publ. Group, 2018) Perez-Leija, Armando; Guzmán-Silva, Diego; León-Montiel, Roberto de J.; Gräfe, Markus; Heinrich, Matthias; Moya-Cessa, Hector; Busch, Kurt; Szameit, Alexander
    Quantum coherence, the physical property underlying fundamental phenomena such as multi-particle interference and entanglement, has emerged as a valuable resource upon which modern technologies are founded. In general, the most prominent adversary of quantum coherence is noise arising from the interaction of the associated dynamical system with its environment. Under certain conditions, however, the existence of noise may drive quantum and classical systems to endure intriguing nontrivial effects. In this vein, here we demonstrate, both theoretically and experimentally, that when two indistinguishable non-interacting particles co-propagate through quantum networks affected by non-dissipative noise, the system always evolves into a steady state in which coherences accounting for particle indistinguishabilty perpetually prevail. Furthermore, we show that the same steady state with surviving quantum coherences is reached even when the initial state exhibits classical correlations.
  • Item
    Nonlinear Optical Investigation of Microbial Chromoproteins
    (Lausanne : Frontiers Media, 2020) Krekic, Szilvia; Zakar, Tomás; Gombos, Zoltán; Valkai, Sándor; Mero, Mark; Zimányi, László; Heiner, Zsuzsanna; Dér, András
    Membrane-bound or cytosolic light-sensitive proteins, playing a crucial role in energy- and signal-transduction processes of various photosynthetic microorganisms, have been optimized for sensing or harvesting light by myriads of years of evolution. Upon absorption of a photon, they undergo a usually cyclic reaction series of conformations, and the accompanying spectro-kinetic events assign robust nonlinear optical (NLO) properties for these chromoproteins. During recent years, they have attracted a considerable interest among researchers of the applied optics community as well, where finding the appropriate NLO material for a particular application is a pivotal task. Potential applications have emerged in various branches of photonics, including optical information storage and processing, higher-harmonic and white-light continuum generation, or biosensorics. In our earlier work, we also raised the possibility of using chromoproteins, such as bacteriorhodopsin (bR), as building blocks for the active elements of integrated optical (IO) circuits, where several organic and inorganic photonic materials have been considered as active components, but so far none of them has been deemed ideal for the purpose. In the current study, we investigate the linear and NLO properties of biofilms made of photoactive yellow protein (PYP) and bR. The kinetics of the photoreactions are monitored by time-resolved absorption experiments, while the refractive index of the films and its light-induced changes are measured using the Optical Waveguide Lightmode Spectroscopy (OWLS) and Z-scan techniques, respectively. The nonlinear refractive index and the refractive index change of both protein films were determined in the green spectral range in a wide range of intensities and at various laser repetition rates. The nonlinear refractive index and refractive index change of PYP were compared to those of bR, with respect to photonics applications. Our results imply that the NLO properties of these proteins make them promising candidates for utilization in applied photonics, and they should be considered as valid alternatives for active components of IO circuits. © Copyright © 2020 Krekic, Zakar, Gombos, Valkai, Mero, Zimányi, Heiner and Dér.
  • Item
    Strong-Field Ionization of Linear Molecules by a Bichromatic Elliptically Polarized Laser Field with Coplanar Counterrotating or Corotating Components of Different Frequencies
    (Bristol : IOP Publ., 2020) Gazibegović-Busuladžić, A.; Busuladžić, M.; Čerkić, A.; Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate strong-field ionization of linear molecules by a two-color laser field of frequencies rω and sω having coplanar counterrotating or corotating elliptically polarized components (ω is the fundamental laser field frequency and r and s are integers). Using the improved molecular strong-field approximation we analyze direct above-threshold ionization (ATI) and high-order ATI (HATI) spectra. More precisely, reflection and rotational symmetries of these spectra for linear molecules aligned in the laser-field polarization plane are considered. The reflection symmetries for particular molecular orientations, known to be valid for a bicircular field (this is the field with circularly polarized counterrotating components), are valid also for arbitrary component ellipticities. However, specific rotational symmetries that are satisfied for HATI by a bicircular field, are violated for an arbitrary elliptically polarized field with counterrotating components. For the corotating case and the N2 molecule we analyze molecular-orientation-dependent interferences and plateau structures for various ellipticities.
  • Item
    35 W continuous-wave Ho:YAG single-crystal fiber laser
    (Cambridge : Cambridge Univ. Press, 2020) Zhao, Yongguang; Wang, Li; Chen, Weidong; Wang, Jianlei; Song, Qingsong; Xu, Xiaodong; Liu, Ying; Shen, Deyuan; Xu, Jun; Mateos, Xavier; Loiko, Pavel; Wang, Zhengping; Xu, Xinguang; Griebner, Uwe; Petrov, Valentin
    We report on a high-power Ho:YAG single-crystal fiber (SCF) laser inband pumped by a high-brightness Tm-fiber laser at 1908 nm. The Ho:YAG SCF grown by the micro-pulling-down technique exhibits a propagation loss of at. A continuous-wave output power of 35.2 W is achieved with a slope efficiency of 42.7%, which is to the best of our knowledge the highest power ever reported from an SCF-based laser in the 2 spectral range. © 2020 The Author(s). Published by Cambridge University Press in association with Chinese Laser Press.
  • Item
    Kinematic origin for near-zero energy structures in mid-IR strong field ionization
    (Bristol : IOP Publ., 2016) Pisanty, Emilio; Ivanov, Misha
    We propose and discuss a kinematic mechanism underlying the recently discovered 'near-zero energy structure' in the photoionization of atoms in strong mid-infrared laser fields, based on trajectories which revisit the ion at low velocities exactly analogous to the series responsible for low-energy structures. The different scaling of the new series, as $E\sim {I}_{p}^{2}/{U}_{p}$, suggests that the near-zero energy structure can be lifted to higher energies, where it can be better resolved and studied, using harder targets with higher ionization potential.
  • Item
    Femtosecond X-ray diffraction from nanolayered oxides
    (Amsterdam : Elsevier, 2010) Von Korff Schmising, C.; Harpoeth, A.; Zhavoronkov, N.; Woerner, M.; Elsaesser, T.; Bargheer, M.; Schmidbauer, M.; Vrejoiu, I.; Hesse, D.; Alexe, M.
    Femtosecond X-ray scattering offers the opportunity to investigate reversible lattice dynamics with unprecedented accuracy. We show in a prototype experiment how strain propagation modifies the functionality of a ferroelectric system on its intrinsic time scale.
  • Item
    Sub-laser-cycle control of coupled electron–nuclear dynamics at a conical intersection
    ([London] : IOP, 2015) Richter, Maria; Bouakline, Foudhil; González-Vázquez, Jesús; Martínez-Fernández, Lara; Corral, Inés; Patchkovskii, Serguei; Morales, Felipe; Ivanov, Misha; Martín, Fernando; Smirnova, Olga
    Nonadiabatic processes play a fundamental role in the understanding of photochemical processes in excited polyatomic molecules. A particularly important example is that of radiationless electronic relaxation at conical intersections (CIs). We discuss new opportunities for controlling coupled electron–nuclear dynamics at CIs, offered by the advent of nearly single-cycle, phase-stable, mid-infrared laser pulses. To illustrate the control mechanism, a two-dimensional model of the NO2 molecule is considered. The key idea of the control scheme is to match the time scale of the laser field oscillations to the characteristic time scale of the wave packet transit through the CI. The instantaneous laser field changes the shape and position of the CI as the wave packet passes through. As the CI moves in the laser field, it 'slices' through the wave packet, sculpting it in the coordinate and momentum space in a way that is sensitive to the carrier-envelope phase of the control pulse. We find that the electronic coherence imparted on the sub-laser-cycle time scale manifests during much longer nuclear dynamics that follow on the many tens of femtosecond time scale. Control efficiency as a function of molecular orientation is analyzed, showing that modest alignment is sufficient for showing the described effects.
  • Item
    Femtosecond x-ray diffraction using the rotating crystal method
    (Les Ulis : EDP Sciences, 2013) Freyer, B.; Stingl, J.; Zamponi, F.; Woerner, M.; Elsaesser, T.
    We demonstrate the rotating-crystal method in femtosecond x-ray diffraction. Structural dynamics of a photoexcited bismuth crystal is mapped in a pump-probe scheme by measuring intensity changes of many Bragg reflections simultaneously.
  • Item
    Characterization of self-modulated electron bunches in an argon plasma
    (Bristol : IOP Publ., 2018) Gross, M.; Lishilin, O.; Loisch, G.; Boonpornprasert, P.; Chen, Y.; Engel, J.; Good, J.; Huck, H.; Isaev, I.; Krasilnikov, M.; Li, X.; Niemczyk, R.; Oppelt, A.; Qian, H.; Renier, Y.; Stephan, F.; Zhao, Q.; Brinkmann, R.; Martinez de la Ossa, A.; Osterhoff, J.; Grüner, F.J.; Mehrling, T.; Schroeder, C.B.; Will, I.
    The self-modulation instability is fundamental for the plasma wakefield acceleration experiment of the AWAKE (Advanced Wakefield Experiment) collaboration at CERN where this effect is used to generate proton bunches for the resonant excitation of high acceleration fields. Utilizing the availability of flexible electron beam shaping together with excellent diagnostics including an RF deflector, a supporting experiment was set up at the electron accelerator PITZ (Photo Injector Test facility at DESY, Zeuthen site), given that the underlying physics is the same. After demonstrating the effect [1] the next goal is to investigate in detail the self-modulation of long (with respect to the plasma wavelength) electron beams. In this contribution we describe parameter studies on self-modulation of a long electron bunch in an argon plasma. The plasma was generated with a discharge cell with densities in the 1013 cm-3 to 1015 cm-3 range. The plasma density was deduced from the plasma wavelength as indicated by the self-modulation period. Parameter scans were conducted with variable plasma density and electron bunch focusing.