Search Results

Now showing 1 - 10 of 748
  • Item
    A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging
    (London : Nature Publishing Group, 2016) Khafaji, Mona; Vossoughi, Manouchehr; Hormozi-Nezhad, M. Reza; Dinarvand, Rassoul; Börrnert, Felix; Irajizad, Azam
    As a bi-functional cancer treatment agent, a new hybrid nanostructure is presented which can be used for photothermal therapy by exposure to one order of magnitude lower laser powers compared to similar nanostructures in addition to substantial enhancment in magnetic resonance imaging (MRI) contrast. This gold-iron oxide hybrid nanostructure (GIHN) is synthesized by a cost-effective and high yield water-based approach. The GIHN is sheilded by PEG. Therefore, it shows high hemo and biocompatibility and more than six month stability. Alongside earlier nanostructures, the heat generation rate of GIHN is compareable with surfactnat-capped gold nanorods (GNRs). Two reasons are behind this enhancement: Firstly the distance between GNRs and SPIONs is adjusted in a way that the surface plasmon resonance of the new nanostructure is similar to bare GNRs and secondly the fraction of GNRs is raised in the hybrid nanostructure. GIHN is then applied as a photothermal agent using laser irradiation with power as low as 0.5−2 and only 32% of human breast adenocarcinoma cells could survive. The GIHN also acts as a dose-dependent transvers relaxation time (T2) MRI contrast agent. The results show that the GINH can be considered as a good candidate for multimodal photothermal therapy and MRI.
  • Item
    Mechanisms of bonding effected by nanoparticles in zirconia coatings applied by spraying of suspensions
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2008) Adam, Jens; Aslan, Mesut; Drumm, Robert; Veith, Michael
    Zirconia coatings consisting of a mixture of coarse and fine grained zirconia powders prepared by spraying of suspensions and subsequent thermal treatment at limited temperatures (up to 500°C) are poor in adherence and in intrinsic mechanical strength. We have shown elsewhere that mechanical properties of these coatings can be improved clearly by adding a small amount of nanoscaled zirconia. Here, the structural and the chemical development of this coating material and of the nanoparticles is examined to gain information about the underlying bonding mechanisms. The applied temperature is relatively low in comparison to the usual onset temperature of accelerated sintering. Nevertheless, the results show that diffusion controlled material transport mechanisms play their role in bonding. The condensation of surface OH groups may participate in bonding, too. These first results confirm the potential of nanoparticles to act as inorganic binder. Additional research effort to clarify the underlying mechanisms in detail is of interest. For the practical side, it can be concluded that the resulting effect of mechanical consolidation of ceramic structures at relatively low temperatures enables new ceramic applications, for example a new type of ceramic coatings on metallic substrates.
  • Item
    Direct nitrous oxide emissions from oilseed rape cropping – a meta-analysis
    (Milton Park : Taylor & Francis, 2014) Walter, Katja; Don, Axel; Fuß, Roland; Kern, Jürgen; Drewer, Julia; Flessa, Heinz
    Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop-type specifics only with respect to crop residues. This meta-analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N-fertilization rates, but interyear and site-specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha−1 yr−1, the mean fraction of fertilizer N that was lost as N2O-N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield-scaled N2O emissions increased after a critical N surplus of about 80 kg N ha−1 yr−1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop-type classes of cereals or other crops should be reconsidered.
  • Item
    Edge states and topological insulating phases generated by curving a nanowire with Rashba spin-orbit coupling
    (College Park : American Physical Society, 2015) Gentile, Paola; Cuoco, Mario; Ortix, Carmine
    We prove that curvature effects in low-dimensional nanomaterials can promote the generation of topological states of matter by considering the paradigmatic example of quantum wires with Rashba spin-orbit coupling, which are bent in a nanoscale periodic serpentine structure. The effect of the periodic curvature generally results in the appearance of insulating phases with a corresponding novel butterfly spectrum characterized by the formation of finite measure complex regions of forbidden energies. When the Fermi energy lies in the gaps, the system displays localized end states protected by topology. We further show that for certain superstructure periods the system possesses topologically nontrivial insulating phases at half filling. Our results suggest that the local curvature and the topology of the electronic states are inextricably intertwined in geometrically deformed nanomaterials.
  • Item
    Nesting-driven multipolar order in CeB6 from photoemission tomography
    (London : Nature Publishing Group, 2016) Koitzsch, A.; Heming, N.; Knupfer, M.; Büchner, B.; Portnichenko, P.Y.; Dukhnenko, A.V.; Shitsevalova, N.Y.; Filipov, V.B.; Lev, L.L.
    Some heavy fermion materials show so-called hidden-order phases which are invisible to many characterization techniques and whose microscopic origin remained controversial for decades. Among such hidden-order compounds, CeB6 is of model character due to its simple electronic configuration and crystal structure. Apart from more conventional antiferromagnetism, it shows an elusive phase at low temperatures, which is commonly associated with multipolar order. Here we show that this phase roots in a Fermi surface instability. This conclusion is based on a full 3D tomographic sampling of the electronic structure by angle-resolved photoemission and comparison with inelastic neutron scattering data. The hidden order is mediated by itinerant electrons. Our measurements will serve as a paradigm for the investigation of hidden-order phases in f-electron systems, but also generally for situations where the itinerant electrons drive orbital or spin order.
  • Item
    Theoretical approach to resonant inelastic X-ray scattering in iron-based superconductors at the energy scale of the superconducting gap
    (London : Nature Publishing Group, 2016) Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen
    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing.
  • Item
    Fabrication of metal nanoparticle arrays by controlled decomposition of polymer particles
    (Bristol : IOP Publishing, 2013) Brodoceanu, Daniel; Fang, Cheng; Voelcker, Nicolas Hans; Bauer, Christina T.; Wonn, Anne; Kroner, Elmar; Arzt, Eduard; Kraus, Tobias
    We report a novel fabrication method for ordered arrays of metal nanoparticles that exploits the uniform arrangement of polymer beads deposited as close-packed monolayers. In contrast to colloidal lithography that applies particles as masks, we used thermal decomposition of the metal-covered particles to precisely define metal structures. Large arrays of noble metal (Au, Ag, Pt) nanoparticles were produced in a three-step process on silicon, fused silica and sapphire substrates, demonstrating the generality of this approach. Polystyrene spheres with diameters ranging between 110 nm and 1 µm were convectively assembled into crystalline monolayers, coated with metal and annealed in a resistive furnace or using an ethanol flame. The thermal decomposition of the polymer microspheres converted the metal layer into particles arranged in hexagonal arrays that preserved the order of the original monolayer. Both the particle size and the interparticle distance were adjusted via the thickness of the metal coating and the sphere diameter, respectively.
  • Item
    Neues Prinzip eines Mähhackers für Kurzumtriebsplantagen
    (Darmstadt : KTBL, 2012) Ehlert, Detlef; Pecenka, Ralf; Wiehe, Jens
    Gegenwärtig auf dem Markt verfügbare Mähhacker für Kurzumtriebsplantagen (KUPs) auf Basis von Feldhäckslern haben Nachteile hinsichtlich der Maschinenmasse und der hohen Investitionskosten. Traktorgebundene Geräte sind bisher nur begrenzt leistungsfähig. Um einen Beitrag zur Erweiterung des Angebots kostengünstiger Erntetechnik zu leisten, wurde ein neuartiges Prinzip eines traktorbasierten Mähhackers für einreihige KUPs entwickelt, der sich durch einen einfachen Aufbau und ein breites Einsatzspektrum auszeichnet.
  • Item
    Bioinspired pressure actuated adhesive system
    (Saarbrücken : Leibniz-Institut für Neue Materialien, 2011) Paretkar, Dadhichi R.; Kamperman, Marleen; Schneider, Andreas S.; Arzt, Eduard
    We developed a dry snythetic adhesive system inspired by gecko feet that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using photolithography and moulding. Adhesion properties were determined with a flat probe as a function of preload. For low and moderate applied compressive preloads, measured adhesion was 7.5 times higher on the patterned surfaces than on flat controls whereas for high preloads adhesion dropped to very low values. In situ imaging showed that the increased preload caused the pillars to deform by bending and/or buckling and to lose their adhesive contact. The elasticity of PDMS aids the pillar recovery to the upright position upon removal of preload enabling repeatability of the switch. Such systems have promising properties e.g. for industrial pick-and-carry operations.
  • Item
    Chiral surface twists and Skyrmion stability in nanolayers of cubic helimagnets
    (College Park : American Physical Society, 2016) Leonov, A. O.; Togawa, Y.; Monchesky, T. L.; Bogdanov, A. N.; Kishine, J.; Kousaka, Y.; Miyagawa, M.; Koyama, T.; Akimitsu, J.; Koyama, Ts.; Harada, K.; Mori, S.; McGrouther, D.; Lamb, R.; Krajnak, M.; McVitie, S.; Stamps, R. L.; Inoue, K.
    Theoretical analysis and Lorentz transmission electron microscopy (LTEM) investigations in an FeGe wedge demonstrate that chiral twists arising near the surfaces of noncentrosymmetric ferromagnets [Meynell et al., Phys. Rev. B 90, 014406 (2014)] provide a stabilization mechanism for magnetic Skyrmion lattices and helicoids in cubic helimagnet nanolayers. The magnetic phase diagram obtained for freestanding cubic helimagnet nanolayers shows that magnetization processes differ fundamentally from those in bulk cubic helimagnets and are characterized by the first-order transitions between modulated phases. LTEM investigations exhibit a series of hysteretic transformation processes among the modulated phases, which results in the formation of the multidomain patterns.