Search Results

Now showing 1 - 10 of 1154
  • Item
    Polymeric monolithic materials: Syntheses, properties, functionalization and applications
    (Amsterdam : Elsevier, 2007) Buchmeiser, M.R.
    The synthetic particularities for the synthesis of polymer-based monolithic materials are summarized. In this context, monoliths prepared via thermal-, UV- or electron-beam triggered free radical polymerization, controlled TEMPO-mediated radical polymerization, polyaddition, polycondensation as well as living ring-opening metathesis polymerization (ROMP) will be covered. Particular attention is devoted to the aspects of controlling pore sizes, pore volumes and pore size distributions as well as functionalization of these supports. Finally, selected, recent applications in separation science, (bio-) catalysis and chip technology will be summarized. © 2007 Elsevier Ltd. All rights reserved.
  • Item
    Simultaneous lidar observations of temperatures and waves in the polar middle atmosphere on the east and west side of the Scandinavian mountains: A case study on 19/20 January 2003
    (MĂ¼nchen : European Geopyhsical Union, 2004) Blum, U.; Fricke, K.H.; Baumgarten, G.; Schöch, A.
    Atmospheric gravity waves have been the subject of intense research for several decades because of their extensive effects on the atmospheric circulation and the temperature structure. The U. Bonn lidar at the Esrange and the ALOMAR RMR lidar at the Andøya Rocket Range are located in northern Scandinavia 250 km apart on the east and west side of the Scandinavian mountain ridge. During January and February 2003 both lidar systems conducted measurements and retrieved atmospheric temperatures. On 19/20 January 2003 simultaneous measurements for more than 7 h were possible. Although during most of the campaign time the atmosphere was not transparent for the propagation of orographically induced gravity waves, they were nevertheless observed at both lidar stations with considerable amplitudes during these simultaneous measurements. And while the source of the observed waves cannot be determined unambiguously, the observations show many characteristics of orographically excited gravity waves. The wave patterns at ALOMAR show a random distribution with time whereas at the Esrange a persistency in the wave patterns is observable. This persistency can also be found in the distribution of the most powerful vertical wavelengths. The mode values are both at about 5 km vertical wavelength, however the distributions are quite different, narrow at the Esrange with values from λz=2–6 km and broad at ALOMAR, covering λz=1–12 km vertical wavelength. In particular the difference between the observations at ALOMAR and at the Esrange can be understood by different orographic conditions while the propagation conditions were quite similar. At both stations the waves deposit energy in the atmosphere with increasing altitude, which leads to a decrease of the observed gravity wave potential energy density with altitude. The meteorological situation during these measurements was different from common winter situations. The ground winds were mostly northerlies, changed in the upper troposphere and lower stratosphere to westerlies and returned to northerlies in the middle stratosphere.
  • Item
    Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol - Part 2: Theoretical approaches
    (MĂ¼nchen : European Geopyhsical Union, 2009) Wex, H.; Petters, M.D.; Carrico, C.M.; Hallbauer, E.; Massling, A.; McMeeking, G.R.; Poulain, L.; Wu, Z.; Kreidenweis, S.M.; Stratmann, F.
    We examine the hygroscopic properties of secondary organic aerosol particles generated through the reaction of α-pinene and ozone using a continuous flow reaction chamber. The water activity versus composition relationship is calculated from measurements of growth factors at relative humidities up to 99.6% and from measurements of cloud condensation nuclei activity. The observed relationships are complex, suggesting highly non-ideal behavior for aerosol water contents at relative humidities less than 98%. We present two models that may explain the observed water activity-composition relationship equally well. The first model assumes that the aerosol is a pseudo binary mixture of infinitely water soluble compounds and sparingly soluble compounds that gradually enter the solution as dilution increases. The second model is used to compute the Gibbs free energy of the aerosol-water mixture and shows that the aerosol behaves similarly to what can be expected for single compounds that contain a certain fraction of oxygenated and non-polar functional groups.
  • Item
    Magnetic quantum oscillations of diagonal conductivity in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall effect
    (Milton Park : Taylor & Francis, 2009) Gvozdikov, V.M.; Taut, M.
    We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σxx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.
  • Item
    Plasma-oxidative degradation of polyphenolics – Influence of non-thermal gas discharges with respect to fresh produce processing
    (Prague : ÄŒSAZV, 2009) Grzegorzewski, F.; SchlĂ¼ter, O.; Ehlbeck, J.; Weltmann, K.-D.; Geyer, M.; Kroh, L.W.; Rohn, S.
    Non-thermal plasma treatment is a promising technology to enhance the shelf-life of fresh or minimaly processed food. An efficient inactivation of microorganisms comes along with a moderate heating of the treated surface. To elucidate the influence of highly reactive plasma-immanent species on the stability and chemical behaviour of phytochemicals, several polyphenolics were exposed to an atmospheric pressure plasma jet (APPJ). The selected flavonoids are ideal target compounds due to their antioxidant activity protecting cells against the damaging effects of reactive oxygen species such as singlet oxygen, superoxide, peroxyl radicals, hydroxyl radicals and peroxynitrite. Reactions were carried out at various radio-frequency voltages, using Ar as a feeding gas. Degradation was followed by reversed-phase high-performance liquid chromatography.
  • Item
    Kelvin probe force microscopy of charged indentation-induced dislocation structures in KBr
    (SaarbrĂ¼cken : Leibniz-Institut fĂ¼r neue Materialien, 2009) Egberts, Philip; Bennewitz, Roland
    The incipient stages of plasticity in KBr single crystals have been examined in ultrahigh vacuum by means of Atomic Force Microscopy and Kelvin Probe Force Microscopy (KPFM). Conducting diamond-coated tips have been used to both indent the crystals and image the resulting plastic deformation. KPFM reveals that edge dislocations intersecting the surface carry a negative charge similar to kinks in surface steps, while screw dislocations show no contrast. Weak topographic features extending in <110> direction from the indentation are identified by atomic-resolution imaging to be pairs of edge dislocations of opposite sign, separated by a distance similar to the indenter radius. They indicate the glide of two parallel {110} planes perpendicular to the surface, a process that allows for a slice of KBr to be pushed away from the indentation site.
  • Item
    Momentum-resolved superconducting gap in the bulk of Ba1-xK xFe2As2 from combined ARPES and μSR measurements
    (Milton Park : Taylor & Francis, 2009) Evtushinsky, D.V.; Inosov, D.S.; Zabolotnyy, V.B.; Viazovska, M.S.; Khasanov, R.; Amato, A.; Klauss, H.-H.; Luetkens, H.; Niedermayer, Ch.; Sun, G.L.; Hinkov, V.; Lin, C.T.; Varykhalov, A.; Koitzsch, A.; Knupfer, M.; BĂ¼chner, B.; Kordyuk, A.A.; Borisenko, S.V.
    Here we present a calculation of the temperature-dependent London penetration depth, λ(T), in Ba1-xKxFe 2As2 (BKFA) on the basis of the electronic band structure (Zabolotnyy et al 2009 Nature 457 569, Zabolotnyy et al 2009 Physica C 469 448) and momentum-dependent superconducting gap (Evtushinsky et al 2009 Phys. Rev. B 79 054517) extracted from angleresolved photoemission spectroscopy (ARPES) data. The results are compared to the direct measurements of λ(T) by muon spin rotation (μSR) (Khasanov et al 2009 Phys. Rev. Lett. 102 187005). The value of λ(T = 0), calculated with no adjustable parameters, equals 270 nm, while the directly measured one is 320 nm; the temperature dependence λ(T) is also easily reproduced. Such agreement between the two completely different approaches allows us to conclude that ARPES studies of BKFA are bulk-representative. Our review of the available experimental studies of the superconducting gap in the new ironbased superconductors in general allows us to state that most of them bear two nearly isotropic gaps with coupling constants 2ΔkBTc = 2.5±1.5 and 7±2.
  • Item
    Out of Africa: High aerosol concentrations in the upper troposphere over Africa
    (MĂ¼nchen : European Geopyhsical Union, 2003) Heintzenberg, J.; Hermann, M.; Theiss, D.
    In the year 2000, six flights (three southbound and three northbound) of the CARIBIC project were conducted between Germany and two destinations in the southern hemisphere (Windhoek, Namibia and Cape Town, South Africa). In the present report, results on particle number concentrations are discussed in three size ranges (>4 nm, >12 nm, and >18 nm particle diameter) during the unique transequatorial Africa flights. The flights covered a total of about 80 h in May, July, and December. Thus, no claim can be made for long-term representativeness of the aerosol data. Nevertheless, they are the first upper systematic tropospheric transequatorial aerosol profiles over Africa. The average aerosol results show a broad maximum, roughly symmetrical to the equator, which compares well in latitudinal extent to a maximum of CO concentrations measured on the same flights. This export of continental surface aerosol to the upper troposphere will be dispersed on a global scale both with the easterly flow near the equator and with the westerlies in the adjacent subtropical regions. There was strong evidence of recent new particle formation before aerosol arrival at flight level, in particular during the time periods between 9:00 and 13:00 local time over Africa. Direct and indirect climate effects of the respective particulate matter remain to be investigated by future flights with the ongoing extension of the CARIBIC payload towards size-resolved measurements above 100 nm particle diameter. At the same time global chemical transport models and aerosol dynamics models need to be extended to be able to reproduce the CARIBIC findings over Africa.
  • Item
    Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics
    (Göttingen : Copernicus GmbH, 2009) Kawa, S.R.; Stolarski, R.S.; Newman, P.A.; Douglass, A.R.; Rex, M.; Hofmann, D.J.; Santee, M.L.; Frieler, K.
    The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate) parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O 2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl 2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS) data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007) are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO + ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen emissions and climate. Further laboratory, theoretical, and possibly atmospheric studies are needed.
  • Item
    Absorption and photoemission spectroscopy of rare-earth oxypnictides
    (Milton Park : Taylor & Francis, 2009) Kroll, T.; Roth, F.; Koitzsch, A.; Kraus, R.; Batchelor, D.R.; Werner, J.; Behr, G.; BĂ¼chner, B.; Knupfer, M.
    The electronic structure of various rare-earth oxypnictides has been investigated by performing Fe L2, 3 x-ray absorption spectroscopy, and Fe 2p and valence band x-ray photoemission spectroscopy. As representative samples the non-superconducting parent compounds LnFeAsO (Ln=La, Ce, Sm and Gd) have been chosen and measured at 25 and 300 K, i.e. below and above the structural and magnetic phase transition at ~150 K. We find no significant change of the electronic structure of the FeAs layers when switching between the different rare-earth ions or when varying the temperature below and above the transition temperatures. Using a simple two-configuration model, we find qualitative agreement with the Fe 2p3/2 core-level spectrum, which allows for a qualitative explanation of the experimental spectral shapes.