Search Results

Now showing 1 - 4 of 4
  • Item
    Metadata analysis of open educational resources
    (New York,NY,United States : Association for Computing Machinery, 2021) Tavakoli, Mohammadreza; Elias, Mirette; Kismihók, Gábor; Auer, Sören; Scheffel, Maren
    Open Educational Resources (OERs) are openly licensed educational materials that are widely used for learning. Nowadays, many online learning repositories provide millions of OERs. Therefore, it is exceedingly difficult for learners to find the most appropriate OER among these resources. Subsequently, the precise OER metadata is critical for providing high-quality services such as search and recommendation. Moreover, metadata facilitates the process of automatic OER quality control as the continuously increasing number of OERs makes manual quality control extremely difficult. This work uses the metadata of 8,887 OERs to perform an exploratory data analysis on OER metadata. Accordingly, this work proposes metadata-based scoring and prediction models to anticipate the quality of OERs. Based on the results, our analysis demonstrated that OER metadata and OER content qualities are closely related, as we could detect high-quality OERs with an accuracy of 94.6%. Our model was also evaluated on 884 educational videos from Youtube to show its applicability on other educational repositories.
  • Item
    IWILDS'22 - Third International Workshop on Investigating Learning During Web Search
    (New York,NY,United States : Association for Computing Machinery, 2022) Hoppe, Anett; Yu, Ran; Liu, Jiqun; Amigo, Enrique
    Since its inception, the World Wide Web has become a major information source, consulted for a diversity of informational tasks. With an abundance of information available online, Web search engines have been a main entry point, supporting users in finding suitable Web content for ever more complex information needs. The IWILDS workshop series invites research on complex search activities related to human learning. It provides an interdisciplinary platform for the presentation and discussion of recent research on human learning on the Web, welcoming perspectives from computer & information science, education and psychology.
  • Item
    Collaborative annotation and semantic enrichment of 3D media
    (New York,NY,United States : Association for Computing Machinery, 2022) Rossenova, Lozana; Schubert, Zoe; Vock, Richard; Sohmen, Lucia; Günther, Lukas; Duchesne, Paul; Blümel, Ina; Aizawa, Akiko
    A new FOSS (free and open source software) toolchain and associated workflow is being developed in the context of NFDI4Culture, a German consortium of research- and cultural heritage institutions working towards a shared infrastructure for research data that meets the needs of 21st century data creators, maintainers and end users across the broad spectrum of the digital libraries and archives field, and the digital humanities. This short paper and demo present how the integrated toolchain connects: 1) OpenRefine - for data reconciliation and batch upload; 2) Wikibase - for linked open data (LOD) storage; and 3) Kompakkt - for rendering and annotating 3D models. The presentation is aimed at librarians, digital curators and data managers interested in learning how to manage research datasets containing 3D media, and how to make them available within an open data environment with 3D-rendering and collaborative annotation features.
  • Item
    TinyGenius: Intertwining natural language processing with microtask crowdsourcing for scholarly knowledge graph creation
    (New York,NY,United States : Association for Computing Machinery, 2022) Oelen, Allard; Stocker, Markus; Auer, Sören; Aizawa, Akiko
    As the number of published scholarly articles grows steadily each year, new methods are needed to organize scholarly knowledge so that it can be more efficiently discovered and used. Natural Language Processing (NLP) techniques are able to autonomously process scholarly articles at scale and to create machine readable representations of the article content. However, autonomous NLP methods are by far not sufficiently accurate to create a high-quality knowledge graph. Yet quality is crucial for the graph to be useful in practice. We present TinyGenius, a methodology to validate NLP-extracted scholarly knowledge statements using microtasks performed with crowdsourcing. The scholarly context in which the crowd workers operate has multiple challenges. The explainability of the employed NLP methods is crucial to provide context in order to support the decision process of crowd workers. We employed TinyGenius to populate a paper-centric knowledge graph, using five distinct NLP methods. In the end, the resulting knowledge graph serves as a digital library for scholarly articles.