Search Results

Now showing 1 - 2 of 2
  • Item
    Requirements Analysis for an Open Research Knowledge Graph
    (Berlin ; Heidelberg : Springer, 2020) Brack, Arthur; Hoppe, Anett; Stocker, Markus; Auer, Sören; Ewerth, Ralph; Hall, Mark; Merčun, Tanja; Risse, Thomas; Duchateau, Fabien
    Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KGs) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective by presenting a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications and outline possible solutions.
  • Item
    Domain-Independent Extraction of Scientific Concepts from Research Articles
    (Cham : Springer, 2020) Brack, Arthur; D'Souza, Jennifer; Hoppe, Anett; Auer, Sören; Ewerth, Ralph; Jose, Joemon M.; Yilmaz, Emine; Magalhães, João; Castells, Pablo; Ferro, Nicola; Silva, Mário J.; Martins, Flávio
    We examine the novel task of domain-independent scientific concept extraction from abstracts of scholarly articles and present two contributions. First, we suggest a set of generic scientific concepts that have been identified in a systematic annotation process. This set of concepts is utilised to annotate a corpus of scientific abstracts from 10 domains of Science, Technology and Medicine at the phrasal level in a joint effort with domain experts. The resulting dataset is used in a set of benchmark experiments to (a) provide baseline performance for this task, (b) examine the transferability of concepts between domains. Second, we present a state-of-the-art deep learning baseline. Further, we propose the active learning strategy for an optimal selection of instances from among the various domains in our data. The experimental results show that (1) a substantial agreement is achievable by non-experts after consultation with domain experts, (2) the baseline system achieves a fairly high F1 score, (3) active learning enables us to nearly halve the amount of required training data.