Search Results

Now showing 1 - 2 of 2
  • Item
    Ontology Design for Pharmaceutical Research Outcomes
    (Cham : Springer, 2020) Say, Zeynep; Fathalla, Said; Vahdati, Sahar; Lehmann, Jens; Auer, Sören; Hall, Mark; Merčun, Tanja; Risse, Thomas; Duchateau, Fabien
    The network of scholarly publishing involves generating and exchanging ideas, certifying research, publishing in order to disseminate findings, and preserving outputs. Despite enormous efforts in providing support for each of those steps in scholarly communication, identifying knowledge fragments is still a big challenge. This is due to the heterogeneous nature of the scholarly data and the current paradigm of distribution by publishing (mostly document-based) over journal articles, numerous repositories, and libraries. Therefore, transforming this paradigm to knowledge-based representation is expected to reform the knowledge sharing in the scholarly world. Although many movements have been initiated in recent years, non-technical scientific communities suffer from transforming document-based publishing to knowledge-based publishing. In this paper, we present a model (PharmSci) for scholarly publishing in the pharmaceutical research domain with the goal of facilitating knowledge discovery through effective ontology-based data integration. PharmSci provides machine-interpretable information to the knowledge discovery process. The principles and guidelines of the ontological engineering have been followed. Reasoning-based techniques are also presented in the design of the ontology to improve the quality of targeted tasks for data integration. The developed ontology is evaluated with a validation process and also a quality verification method.
  • Item
    SemSur: A Core Ontology for the Semantic Representation of Research Findings
    (Amsterdam [u.a.] : Elsevier, 2018) Fathalla, Said; Vahdati, Sahar; Auer, Sören; Lange, Christoph; Fensel, Anna; de Boer, Victor; Pellegrini, Tassilo; Kiesling, Elmar; Haslhofer, Bernhard; Hollink, Laura; Schindler, Alexander
    The way how research is communicated using text publications has not changed much over the past decades. We have the vision that ultimately researchers will work on a common structured knowledge base comprising comprehensive semantic and machine-comprehensible descriptions of their research, thus making research contributions more transparent and comparable. We present the SemSur ontology for semantically capturing the information commonly found in survey and review articles. SemSur is able to represent scientific results and to publish them in a comprehensive knowledge graph, which provides an efficient overview of a research field, and to compare research findings with related works in a structured way, thus saving researchers a significant amount of time and effort. The new release of SemSur covers more domains, defines better alignment with external ontologies and rules for eliciting implicit knowledge. We discuss possible applications and present an evaluation of our approach with the retrospective, exemplary semantification of a survey. We demonstrate the utility of the SemSur ontology to answer queries about the different research contributions covered by the survey. SemSur is currently used and maintained at