Search Results

Now showing 1 - 2 of 2
  • Item
    Radio Frequency CMOS Chem-bio Viscosity Sensors based on Dielectric Spectroscopy
    ([Setúbal] : SCITEPRESS - Science and Technology Publications, Lda., 2017) Guha, Subhajit; Wenger, Christian; Peixoto, Nathalia; Fred, Ana; Gamboa, Hugo; Vaz, Mário
    This paper presents a CMOS Radio frequency dielectric sensor platform for the detection of relative viscosity changes in a fluid sample. The operating frequency of the sensor is 12.28 GHz. This frequency range has been chosen for high signal to noise ratio and also to avoid other low frequency dispersion mechanisms for future lab on chip applications. The sensor chip has been fabricated in 250 nm BiCMOS technology of IHP. The measurements conducted to show the relative viscosity variation detection capability of the sensor chip, were based on mixtures of glycerol and water as well as glycerol and organic alcohol. The detection limit of viscosity is dependent on the permittivity contrast of the sample constituent. Therefore, it is also shown the choice of frequency inherently aids in the permittivity contrast of the sample constituents.
  • Item
    Nonlinear Optical Characterization of CsPbBr3 Nanocrystals as a Novel Material for the Integration into Electro-Optic Modulators
    (Millersville, PA : Materials Research Forum LLC, 2020) Vitale, Francesco; De Matteis, Fabio; Casalboni, Mauro; Prosposito, Paolo; Steglich, Patrick; Ksianzou, Viachaslau; Breiler, Christian; Schrader, Sigurd; Paci, Barbara; Generosi, Amanda; Prosposito, Paolo
    The present work is concerned with the investigation of the nonlinear optical response of green emissive CsPbBr3 nanocrystals, in the form of colloidal dispersions in toluene, synthesized via a room-temperature ligand-assisted supersaturation recrystallization (LASR) method. After carrying out a preliminary characterization via X-Ray Diffraction (XRD) and Absorption and Photoluminescence (PL) Spectroscopies, the optical nonlinearity of the as-obtained colloids is probed by means of a single-beam Z-scan setup. Results show that the material in question, within the sensitivity of the experimental apparatus, exhibits a nonlinear refractive index n2 that is the order of 10-15 cm2/W. Moreover, a three-photon absorption mechanism (3PA) is postulated, according to the fitting of the recorded Z-scan traces and the fundamental absorption threshold, which turns out to be off resonance with twice the energy of the laser radiation. A figure of merit is, then, calculated as an indicator of the quality of the CsPbBr3 nanocrystals as a candidate material for photonic devices, for instance, Kerr-like electro-optic modulators (EOMs).