Search Results

Now showing 1 - 8 of 8
  • Item
    Saltwater intrusion under climate change in North-Western Germany - mapping, modelling and management approaches in the projects TOPSOIL and go-CAM
    (Les Ulis : EDP Sciences, 2018) Wiederhold, Helga; Scheer, Wolfgang; Kirsch, Reinhard; Azizur Rahman, M.; Ronczka, Mathias; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    Climate change will result in rising sea level and, at least for the North Sea region, in rising groundwater table. This leads to a new balance at the fresh–saline groundwater boundary and a new distribution of saltwater intrusions with strong regional differentiations. These effects are investigated in several research projects funded by the European Union and the German Federal Ministry of Education and Research (BMBF). Objectives and some results from the projects TOPSOIL and go-CAM are presented in this poster.
  • Item
    Evaluation of Expert Reports to Quantify the Exploration Risk for Geothermal Projects in Germany
    (Amsterdam [u.a.] : Elsevier, 2015) Ganz, Britta; Ask, Maria; Hangx, Suzanne; Bruckman, Viktor; Kühn, Michael
    The development of deep geothermal energy sources in Germany still faces many uncertainties and high upfront investment costs. Methodical approaches to assess the exploration risk are thus of major importance for geothermal project development. Since 2002, expert reports to quantify the exploration risk for geothermal projects in Germany were carried out. These reports served as a basis for insurance contracts covering the exploration risk. Using data from wells drilled in the meantime, the reports were evaluated and the stated probabilities compared with values actually reached.
  • Item
    Long-time resistivity monitoring of a freshwater/saltwater transition zone using the vertical electrode system SAMOS
    (Les Ulis : EDP Sciences, 2018) Grinat, Michael; Epping, Dieter; Meyer, Robert; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    In September 2009 two newly developed vertical electrode systems were installed in boreholes in the water catchment areas Waterdelle and Ostland at the North Sea island Borkum to monitor possible changes of the transition zone between the freshwater lens and the underlying saltwater. The vertical electrode systems, which were both installed between 44 m and 65 m below ground level, are used for geoelectrical multi-electrode measurements carried out automatically several times per day; the measurements are still ongoing. The whole system consisting of a vertical electrode system in a borehole and the measuring unit at ground level is called SAMOS (Saltwater Monitoring System). At both locations the data show a clear resistivity decrease that indicates the transition zone between freshwater and saltwater. The depth of the transition zone as well as the kind of resistivity decrease is very stable since 2010. Temporal changes are visible if single depths are considered. In 2015 Miriam Ibenthal used a vertical 2D density-dependent groundwater flow model to explain the long-term resistivity measurements and showed that the temporal changes at CLIWAT 2 (Ostland) could be explained by variations of the groundwater level, changing groundwater recharge rates and changing pumping rates of the nearby located drinking water supply wells.
  • Item
    Modelling the Surface Heat Flow Distribution in the Area of Brandenburg (Northern Germany)
    (Amsterdam [u.a.] : Elsevier, 2013) Cacace, Mauro; Scheck-Wenderoth, Magdalena; Noack, Vera; Cherubini, Yvonne; Schellschmidt, Rüdiger; Kühn, Michael; Juhlin, Christopher; Held, Hermann; Bruckman, Viktor; Tambach, Tim; Kempka, Thomas
    A lithosphere scale geological model has been used to determine the surface heat flow component due to conductive heat transport for the area of Brandenburg. The modelling results have been constrained by a direct comparison with available heat flow measurements. The calculated heat flow captures the regional trend in the surface heat flow distribution which can be related to existing thermal conductivity variations between the different sedimentary units. An additional advective component due to topography induced regional flow and focused flow within major fault zones should be considered to explain the spatial variation observed in the surface heat flow.
  • Item
    Modeling saltwater intrusion scenarios for a coastal aquifer at the German North Sea
    (Les Ulis : EDP Sciences, 2018) Schneider, A.; Zhao, H.; Wolf, J.; Logashenko, D.; Reiter, S.; Howahr, M.; Eley, M.; Gelleszun, M.; Wiederhold, H.; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    A 3d regional density-driven flow model of a heterogeneous aquifer system at the German North Sea Coast is set up within the joint project NAWAK (“Development of sustainable adaption strategies for the water supply and distribution infrastructure on condition of climatic and demographic change”). The development of the freshwater-saltwater interface is simulated for three climate and demographic scenarios. Groundwater flow simulations are performed with the finite volume code d3f++ (distributed density driven flow) that has been developed with a view to the modelling of large, complex, strongly density-influenced aquifer systems over long time periods.
  • Item
    Characterization of a regional coastal zone aquifer using an interdisciplinary approach – an example from Weser-Elbe region, Lower Saxony, Germany
    (Les Ulis : EDP Sciences, 2018) Rahman, Mohammad Azizur; González, Eva; Wiederhold, Helga; Deus, Nico; Elbracht, Jörg; Siemon, Bernhard; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    In this study, interdisciplinary approaches are considered to characterize the coastal zone aquifer of the Elbe-Weser region in the North of Lower Saxony, Germany. Geological, hydrogeological, geochemical and geophysical information have been considered to analyze the current status of the aquifers. All the information collectively states that the salinity distribution in the subsurface is heterogeneous both horizontally and vertically. Early age flooding also contributed to this heterogeneity. No general classification of groundwater quality (according to some piper diagrams) could be identified. Helicopter-borne electro-magnetic data clearly show the presence of freshwater reserves below the sea near the west coast. Groundwater recharge largely happens in the moraine ridges (west side of the area) where both the surface elevation and the groundwater level are high. Consequently, submarine groundwater discharge occurs from the same place. All these information will facilitate to develop the planned density driven groundwater flow and transport model for the study area.
  • Item
    Ambient noise analysis for characterizing sub-surface dynamic parameters
    (London [u.a.] : Institute of Physics, 2020) Setiawan, B.; Saidi, T.; Yuliannur, A.; Polom, U.; Ramadhansyah, P.J.; Ali, M.I.
    Ambient noise analysis of horizontal to vertical spectral ratio (HVSR) method has been used widely to provide reliable estimates of the site fundamental frequency and to constrain the inversion of near-surface shear wave velocity. The present paper focuses on the site measurement using the aforementioned analysis by means of the HVSR method for characterizing sub-surface dynamic parameters in the City of Banda Aceh, Indonesia. A Guralp CMG-6TD broadband seismometer was used in this study to cover a wide frequency range from 0.033 Hz to 50 Hz in standard operation. The instrument was deployed at two different sites (i.e. Location#1 of Blang Padang and Location#2 of Stadion Dirmutala) in the City of Banda Aceh for at least 2 hours for ambient noise recording. This continuous of 2 hours' microtremor time series was separated into 30 minutes record from which the site fundamental frequency and shear wave velocity of the measured site were deduced. The later sub-surface dynamic parameter was validated using another technique of reflection seismic. This investigation suggests the fundamental frequency of 0.45 Hz at Location#1 and of 0.65 Hz at Location#2. The estimated shear wave velocity of the top 30 m, Vs,30 of this investigation is 165 m/s at Location#1 and 156 m/s at Location#2. Both the site fundamental frequency and shear wave velocity are important for infrastructure design in the high seismic region of Banda Aceh, Indonesia.
  • Item
    Las Pailas geothermal field - Central America case study: Deciphering a volcanic geothermal play type through the combination of optimized geophysical exploration methods and classic geological conceptual models of volcano-tectonic systems
    (London [u.a.] : Institute of Physics, 2019) Salguero, Leonardo Solís; Rioseco, Ernesto Meneses
    Sustainable exploitation strategies of high-enthalpy geothermal reservoirs in a volcanic geothermal play type require an accurate understanding of key geological structures such as faults, cap rock and caldera boundaries. Of same importance is the recognition of possible magmatic body intrusions and their morphology, whether they are tabular like dikes, layered like sills or domes. The relative value of those magmatic bodies, their age, shape and location rely on the role they play as possible local heat sources, hydraulic barriers between reservoir compartments, and their far-reaching effect on the geochemistry and dynamics of fluids. Obtaining detailed knowledge and a more complete understanding at the early stages of exploration through integrated geological, geophysical and geochemical methods is essential to determine promising geothermal drilling targets for optimized production/re-injection schemes and for the development of adequate exploitation programs. Valuable, extensive geophysical data gathered at Las Pailas high-enthalpy geothermal field at northwestern Costa Rica combined with detailed understanding of the geological structures in the underground may represent a sound basis for an in-depth geoscientific discussion on this topic. Currently, the German cooperation for the identification of geothermal resources in Central America, implemented by the Federal Institute for Geosciences and Natural Resources (BGR), supports an international and interdisciplinary effort, driven by the Instituto Costarricense de Electricidad (ICE) with different international and national research institutions, including the Leibniz Institute for Applied Geophysics (LIAG). The discussions and joint studies refer to the optimized utilization of geophysical and geological methods for geothermal exploration in the Central American region, using the example of Las Pailas Geothermal Field. The results should contribute to a better understanding of the most appropriate geothermal exploration concepts for complex volcanic field settings in Central America.