Search Results

Now showing 1 - 3 of 3
  • Item
    Transparent conductive oxides for coating applications
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2009) Quilitz, Mario; Oliveira, Peter W. de; Heusing, Sabine; Veith, Michael
    Transparent, conductive oxides (TCOs) applied as coatings find multiple applications in various areas such as flat panel display setups, as electrodes in touch-screen panels, electrochromic devices, solar cells and in architectural applications for example as IR reflectors. The favored material in the class of TCOs is still ITO - Sn-doped In2O3 - due to its unique combination of high transparency and electrical conductivity. Though already very good, the potential of the ITO coatings with regard to their conductivity leaves some space for future improvements. Also ITO as a material has some serious drawbacks, such as limited availability and high costs. this work presents some stratgies to overcome these obstacles. One way to enhance the conductivities of alternative materials is to use carbon nanotubes as a dopant. This strategy was tested for ATO (Antimony-doped Tin Oxide), Titan dioxide and AZO (Aluminium-doped Zinc oxide). The results for these materials are presented. In coatings of ITO on glass or polymeric foils usually silica-based binders are used. They have the disadvantage to reduce the contact between the highly conducting grains and thus reduce overall conductivity in the composite. The matrix between the nanoparticles can be improved by several measures. Experiments with relevance in this direction are discussed. A third strategy aims at the reduction of costs in the process of ITO fabrication. Here one way to go is to use an electrochemical synthesis method. Results of the line of development are presented. Other strategies comprise the suitable processing of materials with a lower intrinsic conductivity or the search for materials with high intrinsic conductivity close to that of ITO. Exmples are presented and discussed.
  • Item
    Large area production of optical coatings and devices by the sol-gel process
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2009) Oliveira, Peter; Quilitz, Mario; Heusing, Sabine; Lin, Hechun; Veith, Michael
    [no abstract available]
  • Item
    Electrical conductivity and gas-sensing properties of Mg-doped and undoped single-crystalline In2O3 thin films: Bulk vs. surface
    (Amsterdam : Elsevier, 2015) Rombach, J.; Bierwagen, O.; Papadogianni, A.; Mischo, M.; Cimalla, V.; Berthold, T.; Krischok, S.; Himmerlich, M.
    This study aims to provide a better fundamental understanding of the gas-sensing mechanism of In2O3-based conductometric gas sensors. In contrast to typically used polycrystalline films, we study single crystalline In2O3 thin films grown by molecular beam epitaxy (MBE) as a model system with reduced complexity. Electrical conductance of these films essentially consists of two parallel contributions: the bulk of the film and the surface electron accumulation layer (SEAL). Both these contributions are varied to understand their effect on the sensor response. Conductance changes induced by UV illumination in air, which forces desorption of oxygen adatoms on the surface, give a measure of the sensor response and show that the sensor effect is only due to the SEAL contribution to overall conductance. Therefore, a strong sensitivity increase can be expected by reducing or eliminating the bulk conductivity in single crystalline films or the intra-grain conductivity in polycrystalline films. Gas-response measurements in ozone atmosphere test this approach for the real application.