Search Results

Now showing 1 - 10 of 30
  • Item
    Variations of the aerosol chemical composition during Asian dust storm at Dushanbe, Tajikistan
    (Les Ulis : EDP Sciences, 2019) Fomba, Khanneh Wadinga; Müller, Konrad; Hofer, Julian; Makhmudov, Abduvosit N.; Althausen, Dietrich; Nazarov, Bahron I.; Abdullaev, Sabur F.; Herrmann, Hartmut
    Aerosol chemical composition was characterized during the Central Asian Dust Experiment (CADEX) at Dushanbe (Tajikistan). Aerosol samples were collected during a period of 2 months from March to May 2015 using a high volume DIGITEL DHA-80 sampler on quartz fiber filters. The filters were analyzed for their ionic, trace metals as well as organic and elemental carbon (OC/EC) content. The aerosol mass showed strong variation with mass concentration ranging from 18 μg/m3 to 110 μg/m3. The mineral dust concentrations varied between 0.9 μg/m3 and 88 μg/m3. Days of high aerosol mass loadings were dominated by mineral dust, which made up to about 80% of the aerosol mass while organic matter and inorganic ions made up about 70% of the aerosol mass during days of low aerosol mass loadings. The mineral dust composition showed different trace metal signatures in comparison to Saharan dust with higher Ca content and Ca/Fe ratios twice as high as that observed in Saharan dust. Strong influence of anthropogenic activities was observed in the trace metal concentrations with Zn and Pb concentrations ranging from 7 to 197 ng/m3 and 2 to 20 ng/m3, respectively. Mineral dust and anthropogenic activities relating to traffic, combustion as well as metallurgical industrial emissions are identified as the sources of the aerosol during this period. © 2019 The Authors, published by EDP Sciences.
  • Item
    Two-Phase Fluid Flow Experiments Monitored by NMR
    (Les Ulis : EDP Sciences, 2020) Hiller, Thomas; Hoder, Gabriel; Amann-Hildenbrand, Alexandra; Klitzsch, Norbert; Schleifer, Norbert
    We present a newly developed high-pressure nuclear magnetic resonance (NMR) flow cell, which allows for the simultaneous determination of water saturation, effective gas permeability and NMR relaxation time distribution in two-phase fluid flow experiments. We introduce both the experimental setup and the experimental procedure on a tight Rotliegend sandstone sample. The initially fully water saturated sample is systematically drained by a stepwise increase of gas (Nitrogen) inlet pressure and the drainage process is continuously monitored by low field NMR relaxation measurements. After correction of the data for temperature fluctuations, the monitored changes in water saturation proved very accurate. The experimental procedure provides quantitative information about the total water saturation as well as about its distribution within the pore space at defined differential pressure conditions. Furthermore, the relationship between water saturation and relative (or effective) apparent permeability is directly determined. © The Authors, published by EDP Sciences, 2020.
  • Item
    Observation of Arabian and Saharan dust in Cyprus with a new generation of the smart Raman lidar Polly
    (Les Ulis : EDP Sciences, 2016) Engelmann, Ronny; Ansmann, Albert; Bühl, Johannes; Heese, Birgit; Baars, Holger; Althausen, Dietrich; Marinou, Eleni; Amiridis, Vassilis; Mamouri, Rodanthi-Elisavet; Vrekoussis, Mihalis
    The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. Aiming this goal, TROPOS developed the fully automated multiwavelength polarization Raman lidar Polly since over 10 years [1, 2]. In cooperation with different partner research institutes the system was improved continuously. Our latest lidar developments include aside the “3+2” measurements also a near-range receiver to measure aerosol extinction and backscatter down to 120 m above the lidar, a water-vapor channel, and measurements of the linear depolarization at two wavelengths. The latest system was built in cooperation with the National Observatory of Athens (NOA). Its first campaign however was performed at the Cyprus Institute of Nicosia from March to April 2015, aiming specifically at the observation of ice nuclei with in-situ and lidar remote sensing techniques in the framework of BACCHUS [3, 4].
  • Item
    Measurement of the linear depolarization ratio of aged dust at three wavelengths (355, 532 and 1064 nm) simultaneously over Barbados
    (Les Ulis : EDP Sciences, 2016) Haarig, Moritz; Althausen, Dietrich; Ansmann, Albert; Klepel, André; Baars, Holger; Engelmann, Ronny; Groß, Silke; Freudenthaler, Volker
    A ground-based polarization Raman lidar is presented, that is able to measure the depolarization ratio at three wavelengths (355, 532 and 1064 nm) simultaneously. This new feature is implemented for the first time in a Raman lidar. It provides a full dataset of 3 backscatter coefficients, two extinction coefficients and 3 depolarization ratios (3+2+3 lidar system). To ensure the data quality, it has been compared to the well characterized two-wavelength polarization lidar POLIS. Measurements of long-range transported dust have been performed in the framework of the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the Caribbean.
  • Item
    Vertical profiles of dust and other aerosol types above a coastal site
    (Les Ulis : EDP Sciences, 2019) Althausen, Dietrich; Mewes, Silke; Heese, Birgit; Hofer, Julian; Schechner, Yoav; Aides, Amit; Holodovsky, Vadim
    Monthly mean vertical profiles of aerosol type occurrences are determined from multiwavelength Raman and polarization lidar measurements above Haifa, Israel, in 2017. This contribution presents the applied methods and threshold values. The results are discussed for one example, May 2017. This month shows more often large, non-spherical particles in lofted layers than within the planetary boundary layer. Small particles are observed at higher altitudes only when they are observed in lower altitudes, too. © 2019 The Authors, published by EDP Sciences.
  • Item
    HETEAC: The Aerosol Classification model for EarthCARE
    (Les Ulis : EDP Sciences, 2016) Wandinger, Ulla; Baars, Holger; Engelmann, Ronny; Hünerbein, Anja; Horn, Stefan; Kanitz, Thomas; Donovan, David; van Zadelhoff, Gerd-Jan; Daou, David; Fischer, Jürgen; von Bismarck, Jonas; Filipitsch, Florian; Docter, Nicole; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias
    We introduce the Hybrid End-To-End Aerosol Classification (HETEAC) model for the upcoming EarthCARE mission. The model serves as the common baseline for development, evaluation, and implementation of EarthCARE algorithms. It shall ensure the consistency of different aerosol products from the multi-instrument platform as well as facilitate the conform specification of broad-band optical properties necessary for the EarthCARE radiative closure efforts. The hybrid approach ensures the theoretical description of aerosol microphysics consistent with the optical properties of various aerosol types known from observations. The end-to-end model permits the uniform representation of aerosol types in terms of microphysical, optical and radiative properties.
  • Item
    3D Structure of Saharan Dust Transport Towards Europe as Seen by CALIPSO
    (Les Ulis : EDP Sciences, 2016) Marinou, Eleni; Amiridis, Vassilis; Tsekeri, Alexandra; Solomos, Stavros; Kokkalis, Panos; Proestakis, Emmanouil; Kottas, Michael; Binietoglou, Ioannis; Zanis, Prodromos; Kazadzis, Stelios; Wandinger, Ulla; Ansmann, Albert
    We present a 3D multi-year monthly mean climatology of Saharan dust advection over Europe using an area-optimized pure dust CALIPSO product. The product has been developed by applying EARLINET-measured dust lidar ratios and depolarization-based dust discrimination methods and it is shown to have a very good agreement in terms of AOD when compared to AERONET over Europe/North Africa and MODIS over Mediterranean. The processing of such purely observational data reveals the certain seasonal patterns of dust transportation towards Europe and the Atlantic Ocean. The physical and optical properties of the dust layer are identified for several areas near the Saharan sources, over the Mediterranean and over continental Europe.
  • Item
    Aerosol properties over Southeastern China from multi-wavelength Raman and depolarization lidar measurements
    (Les Ulis : EDP Sciences, 2016) Heese, Birgit; Althausen, Dietrich; Baars, Holger; Bohlmann, Stephanie; Deng, Ruru
    A dataset of particle optical properties of highly polluted urban aerosol over the Pearl River Delta, Guangzhou, China is presented. The data were derived from multi-wavelengths Raman and depolarization lidar PollyXT and AERONET sun photometer measurements. The measurement campaign was conducted from Nov 2011 to June 2012. High aerosol optical depth was observed in the polluted atmosphere over this megacity, with a mean value of 0.54 ± 0.33 and a peak value of even 1.9. For the particle characterization the lidar ratio and the linear particle depolarization ratio, both at 532 nm, were used. The mean values of these properties are 48.0 sr ± 10.7 sr for the lidar ratio and 4%+-4% for the particle depolarization ratio, which means most depolarization measurements stayed below 10%. So far, most of these results indicate urban pollution particles mixed with particles arisen from biomass and industrial burning.
  • Item
    Chirality selection in the vortex state of magnetic nanodisks with a screw dislocation
    (Les Ulis : EDP Sciences, 2014) Butenko, A.B.; Rößler, U.K.
    Structural defects in magnetic crystalline materials may locally change magnetic properties and can significantly influence the behavior of magnetic nanostructures. E.g., surface-induced Dzyaloshinskii-Moriya interactions can strongly affect vortex structures in magnetic nanodisks causing a chirality selection. Near lattice defects, the spin-orbit interactions induce local antisymmetric Dzyaloshinskii-Moriya exchange and cause effective anisotropies, which can result in spin canting. Broken inversion symmetry near a defect leads to locally chiral exchange. We present a phenomenological approach for dislocation-induced Dzyaloshinskii-Moriya couplings. As an example we investigate effects of a screw dislocation at the center of a magnetic nanodisk with a vortex state. By numerical calculations on vortex profiles we analyze equilibrium parameters of the vortex as functions of applied magnetic field and the material and geometrical parameters. It is proposed that magnetic nanodisks with defects provide a suitable experimental setting to study induced chirality by spin-orbit effects.
  • Item
    Overview of the Earthcare L2 lidar retrieval chain
    (Les Ulis : EDP Sciences, 2016) van Zadelhoff, Gerd-Jan; Donovan, D.; Wandinger, U.; Daou, D.; Horn, S.; Hunerbein, A.; Fischer, J.; von Bismarck, J.; Filipitsch, F.; Docter, N.; Eisinger, M.; Lajas, D.; Wehr, T.
    In this paper an introduction to the planned L2 retrieval algorithms for the Earth Clouds and Radiation Explorer (EarthCARE) lidar ATLID is given. The ATLID instrument is a high spectral resolution lidar which will provide independent retrievals of extinction and backscatter profiles and will be launched in 2018. A short description of the intended operational ESA products is given together with the logic behind the choices made.