Search Results

Now showing 1 - 4 of 4
  • Item
    Soft Inkjet Circuits: Rapid Multi-Material Fabrication of Soft Circuits using a Commodity Inkjet Printer
    (New York City : Association for Computing Machinery, 2019) Khan, Arshad; Roo, Joan Sol; Kraus, Tobias; Steimle, Jürgen
    Despite the increasing popularity of soft interactive devices, their fabrication remains complex and time consuming. We contribute a process for rapid do-it-yourself fabrication of soft circuits using a conventional desktop inkjet printer. It supports inkjet printing of circuits that are stretchable, ultrathin, high resolution, and integrated with a wide variety of materials used for prototyping. We introduce multi-ink functional printing on a desktop printer for realizing multi-material devices, including conductive and isolating inks. We further present DIY techniques to enhance compatibility between inks and substrates and the circuits' elasticity. This enables circuits on a wide set of materials including temporary tattoo paper, textiles, and thermoplastic. Four application cases demonstrate versatile uses for realizing stretchable devices, e-textiles, body-based and re-shapeable interfaces.
  • Item
    Semi-supervised identification of rarely appearing persons in video by correcting weak labels
    (New York City : Association for Computing Machinery, 2016) Müller, Eric; Otto, Christian; Ewerth, Ralph
    Some recent approaches for character identification in movies and TV broadcasts are realized in a semi-supervised manner by assigning transcripts and/or subtitles to the speakers. However, the labels obtained in this way achieve only an accuracy of 80% - 90% and the number of training examples for the different actors is unevenly distributed. In this paper, we propose a novel approach for person identification in video by correcting and extending the training data with reliable predictions to reduce the number of annotation errors. Furthermore, the intra-class diversity of rarely speaking characters is enhanced. To address the imbalance of training data per person, we suggest two complementary prediction scores. These scores are also used to recognize whether or not a face track belongs to a (supporting) character whose identity does not appear in the transcript etc. Experimental results demonstrate the feasibility of the proposed approach, outperforming the current state of the art.
  • Item
    Estimating the information gap between textual and visual representations
    (New York City : Association for Computing Machinery, 2017) Henning, Christian; Ewerth, Ralph
    Photos, drawings, figures, etc. supplement textual information in various kinds of media, for example, in web news or scientific pub- lications. In this respect, the intended effect of an image can be quite different, e.g., providing additional information, focusing on certain details of surrounding text, or simply being a general il- lustration of a topic. As a consequence, the semantic correlation between information of different modalities can vary noticeably, too. Moreover, cross-modal interrelations are often hard to describe in a precise way. The variety of possible interrelations of textual and graphical information and the question, how they can be de- scribed and automatically estimated have not been addressed yet by previous work. In this paper, we present several contributions to close this gap. First, we introduce two measures to describe cross- modal interrelations: cross-modal mutual information (CMI) and semantic correlation (SC). Second, a novel approach relying on deep learning is suggested to estimate CMI and SC of textual and visual information. Third, three diverse datasets are leveraged to learn an appropriate deep neural network model for the demanding task. The system has been evaluated on a challenging test set and the experimental results demonstrate the feasibility of the approach.
  • Item
    On the effects of spam filtering and incremental learning for web-supervised visual concept classification
    (New York City : Association for Computing Machinery, 2016) Springstein , Matthias; Ewerth, Ralph
    Deep neural networks have been successfully applied to the task of visual concept classification. However, they require a large number of training examples for learning. Although pre-trained deep neural networks are available for some domains, they usually have to be fine-tuned for an envisaged target domain. Recently, some approaches have been suggested that are aimed at incrementally (or even endlessly) learning visual concepts based on Web data. Since tags of Web images are often noisy, normally some filtering mechanisms are employed in order to remove ``spam'' images that are not appropriate for training. In this paper, we investigate several aspects of a web-supervised system that has to be adapted to another target domain: 1.) the effect of incremental learning, 2.) the effect of spam filtering, and 3.) the behavior of particular concept classes with respect to 1.) and 2.). The experimental results provide some insights under which conditions incremental learning and spam filtering are useful.