Search Results

Now showing 1 - 3 of 3
  • Item
    Growth, fabrication, and investigation of light-emitting diodes based on GaN nanowires
    (Berlin : Humboldt-Universität zu Berlin, 2016) Musolino, Mattia
    Diese Arbeit gibt einen tiefgehenden Einblick in verschiedene Aspekte von auf (In,Ga)N/GaN Heterostrukturen basierenden Leuchtdioden (LEDs), mittels Molekularstrahlepitaxie entlang der Achse von Nanodrähten (NWs) auf Si Substraten gewachsen. Insbesondere wurden die Wachstumsparameter angepasst, um eine Koaleszierung der Nanodrähte zu vermindern. Auf diese Weise konnte die durch die NW-LEDs emittierte Intensität der Photolumineszenz (PL) um einen Faktor zehn erhöht werden. Die opto-elektronischen Eigenschaften von NW-LEDs konnten durch die Verwendung von Indiumzinoxid, anstatt von Ni/Au als Frontkontakt, verbessert werden. Zudem wurde demonstriert, dass auch selektives Wachstum (SAG) von GaN NWs auf AlN gepufferten Si Substraten mit einer guten Leistungsfähigkeit von Geräte vereinbar ist und somit als Wegbereiter für eine neue Generation von NW-LEDs auf Si dienen kann. Weiterhin war es möglich, strukturierte Felder von ultradünnen NWs durch SAG und thermische in situ Dekomposition herzustellen. In den durch die NW-LEDs emittierten Elektrolumineszenzspektren (EL) wurde eine Doppellinenstruktur beobachtet, die höchstwahrscheinlich von den kompressiven Verspannungen im benachbarten Quantentopf, durch die Elektronensperrschicht verursachten, herrührt. Die Analyse von temperaturabhängigen PL- und EL-Messungen zeigt, dass Ladungsträgerlokalisierungen nicht ausschlaggebend für die EL-Emission von NW-LEDs sind. Die Strom-Spannungs-Charakteristiken (I-V) von NW-LEDs unter Vorwärtsspannung wurden mittels eines Modells beschrieben, in das die vielkomponentige Natur der LEDs berücksichtigt wird. Die unter Rückwärtsspannung aktiven Transportmechanismen wurden anhand von Kapazitätstransientenmessungen und temperaturabhänigigen I-V-Messungen untersucht. Dann wurde ein physikalisches Modell zur quantitativen Beschreibung der besonderen I-V-T Charakteristik der untersuchten NW-LEDs entwickelt.
  • Item
    Control of the emission wavelength of gallium nitride-based nanowire light-emitting diodes
    (Berlin : Humboldt-Universität zu Berlin, 2013) Wölz, Martin
    Halbleiter-Nanosäulen (auch -Nanodrähte) werden als Baustein für Leuchtdioden (LEDs) untersucht. Herkömmliche LEDs aus Galliumnitrid (GaN) bestehen aus mehreren Kristallschichten auf einkristallinen Substraten. Ihr Leistungsvermögen wird durch Gitterfehlpassung und dadurch hervorgerufene Verspannung, piezoelektrische Felder und Kristallfehler beschränkt. GaN-Nanosäulen können ohne Kristallfehler auf Fremdsubstraten gezüchtet werden. Verspannung wird in Nanosäulen elastisch an der Oberfläche abgebaut, dadurch werden Kristallfehler und piezoelektrische Felder reduziert. In dieser Arbeit wurden GaN-Nanosäulen durch Molukularstrahlepitaxie katalysatorfrei gezüchtet. Eine Machbarkeitsstudie über das Kristallwachstum von Halbleiter-Nanosäulen auf Metall zeigt, dass GaN-Nanosäulen in hoher Kristallqualität ohne einkristallines Substrat epitaktisch auf Titanschichten gezüchtet werden können. Für das Wachstum axialer (In,Ga)N/GaN Heterostrukturen in Nanosäulen wurden quantitative Modelle entwickelt. Die erfolgreiche Herstellung von Nanosäulen-LEDs auf Silizium-Wafern zeigt, dass dadurch eine Kontrolle der Emissionswellenlänge erreicht wird. Die Gitterverspannung der Heterostrukturen in Nanosäulen ist ungleichmäßig aufgrund des Spannungsabbaus an den Seitenwänden. Das katalysatorfreie Zuchtverfahren führt zu weiteren statistischen Schwankungen der Nanosäulendurchmesser und der Abschnittlängen. Die entstandene Zusammensetzung und Verspannung des (In,Ga)N-Mischkristalls wird durch Röntgenbeugung und resonant angeregte Ramanspektroskopie ermittelt. Infolge der Ungleichmäßigkeiten erfordert die Auswertung genaue Simulationsrechnungen. Eine einfache Näherung der mittleren Verspannung einzelner Abschnitte kann aus den genauen Rechnungen abgeleitet werden. Gezielte Verspannungseinstellung erfolgt durch die Wahl der Abschnittlängen. Die Wirksamkeit dieses allgemeingültigen Verfahrens wird durch die Bestimmung der Verspannung von (In,Ga)N-Abschnitten in GaN-Nanosäulen gezeigt.
  • Item
    Optical properties of single semiconductor nanowires and nanowire ensembles – probing surface physics by photoluminescence spectroscopy
    (Berlin : Humboldt-Universität zu Berlin, 2011) Pfüller, Carsten
    This thesis presents a detailed investigation of the optical properties of semiconductor nanowires (NWs) in general and single GaN NWs and GaN NW ensembles in particular by photoluminescence (PL) spectroscopy. NWs are often considered as potential building blocks for future nanometer-scaled devices. This vision is based on several attractive features that are generally ascribed to NWs. In the first part of the thesis, some of these features are examined using semiconductor NWs of different materials. On the basis of the temperature-dependent PL of Au- and self-assisted GaAs/(Al,Ga)As core-shell NWs, the influence of foreign catalyst particles on the optical properties of NWs is investigated. The effect of the substrate choice is studied by comparing the PL of ZnO NWs grown on Si, Sapphire, and ZnO substrates. The major part of this thesis discusses the optical properties of GaN NWs. The investigation of the PL of single GaN NWs and GaN NW ensembles reveals the significance of their large surface-to-volume ratio and that each NW exhibits its own individual recombination behavior. An unexpected broadening of the donor-bound exciton transition is explained by the abundant presence of surface donors in NWs. The existence and statistical relevance of these surface donors is confirmed by PL experiments of single GaN NWs which are either dispersed or free-standing. Furthermore, the influence of electric fields on the optical properties of GaN NWs is investigated and the coupling of light with GaN NWs is studied by reflectance and Raman measurements. The central results of this thesis motivate the introduction of a model that explains the typically observed nonexponential recombination dynamics in NW ensembles. It is based on a distribution of recombination rates. Preliminary simulations using this model describe the nonexponential decay of GaN NW ensembles satisfactorily and allow for an estimation of their internal quantum efficiency.