Search Results

Now showing 1 - 4 of 4
  • Item
    Precision spectroscopy with a frequency-comb-calibrated solar spectrograph
    (Freiburg : Universität Freiburg, 2015) Doerr, Hans-Peter
    The measurement of the velocity field of the plasma at the solar surface is a standard diagnostic tool in observational solar physics. Detailed information about the energy transport as well as on the stratification of temperature, pressure and magnetic fields in the solar atmosphere are encoded in Doppler shifts and in the precise shape of the spectral lines. The available instruments deliver data of excellent quality and precision. However, absolute wavelength calibration in solar spectroscopy was so far mostly limited to indirect methods and in general suffers from large systematic uncertainties of the order of 100 m/s. During the course of this thesis, a novel wavelength calibration system based on a laser frequency comb was deployed to the solar Vacuum Tower Telescope (VTT), Tenerife, with the goal of enabling highly accurate solar wavelength measurements at the level of 1 m/s on an absolute scale. The frequency comb was developed in a collaboration between the Kiepenheuer-Institute for Solar Physics, Freiburg, Germany and the Max Planck Institute for Quantum Optics, Garching, Germany. The efforts cumulated in the new prototype instrument LARS (Lars is an Absolute Reference Spectrograph) for solar precision spectroscopy which is in preliminary scientific operation since~2013. The instrument is based on the high-resolution echelle spectrograph of the VTT for which feed optics based on single-mode optical fibres were developed for this project. The setup routinely achieves an absolute calibration accuracy of 60 cm/s and a repeatability of 2.5 cm/s. An unprecedented repeatability of only 0.32 cm/s could be demonstrated with a differential calibration scheme. In combination with the high spectral resolving power of the spectrograph of 7x10^5 and virtually absent internal scattered light, LARS provides a spectral purity and fidelity that previously was the domain of Fourier-transform spectrometers only. The instrument therefore provides unique capabilities for precision spectroscopy of the Sun and laboratory light sources. The first scientific observations aimed at measuring the accurate wavelengths of selected solar Fraunhofer lines to characterise the so-called convective blue shift and its centre to limb variation. The convective blueshifts were derived with respect to laboratory wavelengths that were obtained from spectral lamps measured with the same instrument. The measurements agree with previous studies but provide a way higher accuracy. The data is only partially compatible with numerical simulations that were published recently. Further measurements were carried out to provide the absolute wavelengths of telluric O2 lines that are commonly used for wavelength calibration. With an accuracy of 1 m/s, these new measurements are two orders of magnitude better than existing data.
  • Item
    Terahertz quantum-cascade lasers for spectroscopic applications
    (Berlin : Technische Universität Berlin, 2018) Röben, Benjamin Malte; Grahn, Holger T.
    Terahertz (THz) quantum-cascade lasers (QCLs) are unipolar semiconductor heterostructure lasers that emit in the far-infrared spectral range. They are very attractive radiation sources for spectroscopy, since they are very compact and exhibit typical output powers of severalmWas well as linewidths in the MHz to kHz range. This thesis presents the development of methods to tailor the emission characteristics of THz QCLs and employ them for spectroscopy with highest resolution and sensitivity. In many cases, these spectroscopic applications require that the far-field distribution of the THz QCLs exhibits only a single lobe. However, multiple lobes in the far-field distribution of THz QCLs were experimentally observed, which were unambiguously attributed to the typically employed mounting geometry and to the cryogenic operation environment such as the optical window. Based on these results, a method to obtain a single-lobed far-field distribution is demonstrated. A critical requirement to employ a THz QCL for high-resolution spectroscopy of a single absorption or emission line is the precise control of its emission frequency. This long-standing problem is solved by a newly developed technique relying on the mechanical polishing of the front facet. A QCL fabricated in this manner allows for spectroscopy at a maximal resolution in the MHz to kHz range, but its accessible bandwidth is usually limited to a few GHz. In contrast, a newly developed method to utilize QCLs as sources for THz Fourier transform spectrometers enables highly sensitive spectroscopy over a significantly larger bandwidth of at least 72 GHz with a maximal resolution of typically 100 MHz. The application of QCLs as sources for THz Fourier transform spectroscopy leads to a signal-to-noise ratio and dynamic range that is substantially increased by a factor of 10 to 100 as compared to conventional sources. The results presented in this thesis pave the way to routinely employ THz QCLs for spectroscopic applications in the near future.
  • Item
    Wave phenomena in sunspots
    (Freiburg : Universität Freiburg, 2015) Löhner-Böttcher, Johannes
    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the ‘umbral flashes’ and ‘running penumbral waves’ as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 – 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the magnetic field lines. Signatures of umbral flashes and running penumbral waves are found already in the middle to upper photosphere. The signal and velocity increases toward the chromosphere. The shock wave behavior of the umbral flashes is confirmed by the evolving saw-tooth pattern in velocity and the strong downward motion of the plasma right after the passage of the shock front. The power spectra and peak periods of sunspot waves vary significantly with atmospheric altitude and position within the sunspot. In the vertical field of the umbra, the mixture of wave periods in the lower photosphere transforms into a domination of the 2.5min range in the upper photosphere and chromosphere. In the differentially inclined penumbra, the dominating wave periods increase with radial distance. The acoustic cut-off frequency which blocks the propagation of long-period waves is considered to increase with the field inclination and the ambient sound speed. The reconstruction of the sunspot’s magnetic field inclination based on the peak period distribution yields consistent results with the inferred photospheric and extrapolated coronal magnetic field.
  • Item
    Structure and dynamics of microcavity exciton-polaritons in acoustic square lattices
    (Berlin : Humboldt-Universität zu Berlin, 2018) Buller, Jakov
    Exziton-Polaritonen in Mikrokavitäten sind Quasi-Teilchen, die unter bestimmten physikalischen Konditionen kondensieren und damit in einen energetisch gleichen, gemeinsamen makroskopischen Quantenzustand (MQZ) übergehen können. Exziton-Polariton-Kondensate können mithilfe von akustischen Oberflächenwellen moduliert werden, um ihre Eigenschaften zu verändern. Dies ist insbesondere von großer Relevanz für zukünftige Anwendungen. In dieser Arbeit wurden die Struktur sowie die Dynamik der Exziton-Polariton-Kondensate in den durch die akustischen Oberflächenwellen erzeugten quadratischen Gittern untersucht. Es wurde dazu die Wellenfunktion der Exziton-Polariton-Kondensate im Rahmen der spektroskopischen und zeitaufgelösten Messungen im Orts- und Impulsraum abgebildet. Die MQZ wurden in einer optisch-parametrischen Oszillatorkonfiguration resonant angeregt. Die spektroskopischen Messungen zeigten, dass Exziton-Polariton-Kondensate in akustischen quadratischen Gittern aus unterschiedlichen MQZ, nämlich aus einem zwei-dimensionalen Gap-Soliton (2D GS) umgeben von mehreren ein-dimensionalen MQZ, und einem inkohärenten Strahlungshintergrund zusammengesetzt sind. Im Rahmen der zeitaufgelösten Experimente wurde die Dynamik der Wellenfunktion des 2D GS untersucht. Die zeitaufgelösten Ergebnisse zeigten, dass sowohl die Intensität der von dem 2D GS emittierten Photolumineszenz (PL) als auch die Kohärenzlänge des 2D GS zeitlich oszillieren. Die Intensität der PL und die Kohärenzlänge hängen von der Anregungsleistung, der Größe des Laserspots sowie von der relativen Position des akustischen Gitters und dem Laserspot ab. Im Ausblick dieser Arbeit wurde theoretisch die Anregung von Tamm-Plasmon/Exziton- Polaritonen (TPEP) sowie deren Modulation mithilfe von akustischen Oberflächenwellen diskutiert. TPEP entstehen durch die Superposition der in der Grenzschicht zwischen Mikrokavität und Metall angeregten Tamm-Plasmonen und den in der Mikrokavität erzeugten Exziton-Polaritonen.