Search Results

Now showing 1 - 4 of 4
  • Item
    Entwicklung und Charakterisierung von Instrumenten zur hochauflösenden Spektropolarimetrie
    (Freiburg : Universität Freiburg, 2016) Schubert, Matthias Johannes
    Kontext Unsere Sonne stellt ein einzigartiges Hochenergie-Plasmalabor dar, welches mit Teleskopen räumlich aufgelöst studiert werden kann. Hier ist es möglich, die moderne Physik an Hand von Beobachtungen zu verifizieren und zu erweitern, welche durch Experimente nicht erfasst werden können. Aktuelle Simulationen der Magnetokonvektion zur Beschreibung der dynamischen Vorgänge erreichen zum Beispiel in der solaren Photosphäre eine räumliche Auflösung bis zu 6km bei einer Wellenlänge von 500nm und modellieren im Ansatz die Entstehung von Poren, Sonnenflecken oder koronalen Massenauswürfen. Mit Hilfe hochaufgelöster spektropolarimetrischer Beobachtungen und den daraus gewonnenen zweidimensionalen Karten der Dopplergeschwindigkeiten und zugehörigen magnetischen Feldvektoren in unterschiedlichen solaren Atmosphärenschichten müssen diese Modelle überprüft werden. Durch den Bau eines neuen bodengebundenen 4 m-Teleskops und der Entwicklung eines zweidimensionalem Spektropolarimeters stehen in naher Zukunft Werkzeuge zur Verfügung, um hochdynamische, kleinskalige Prozesse für wissenschaftliche Studien zu beobachten. Zielsetzung Entwicklung eines Simulationsalgorithmus zur Beschreibung der instrumentellen Einflüsse eines zweidimensionalen Spektropolarimeters auf physikalische Messungen. Das zu entwickelnde Filterinstrument besteht aus einem Vorfilter, einer Kombination aus zwei oder drei Fabry-Pérot-Interferometern (FPI) und einem Polarisationsmodulator. Da die induzierten Fehler auf wissenschaftliche Beobachtungen nicht vernachlässigbar sind, ist es notwendig, passende Methoden zur Datenkalibration zu entwickeln. Aus den simulierten Fehlern auf physikalische Messgrößen und den Untersuchungen zur Datenkalibration werden aus den Ergebnissen Bedingungen an den Herstellungsprozess des Filterinstrumentes abgeleitet, sodass die geforderte physikalische Messgenauigkeit erfüllt ist. Methoden Da das Kiepenheuer-Institut ein baugleiches Instrument auf Teneriffa am Vakuum-Turm-Teleskop am Observatorio del Teide betreibt, wurde hier eine Charakterisierungskampagne durchgeführt, um die instrumentellen Einflüsse auf wissenschaftliche Beobachtungen unter realistischen Bedingungen zu bestimmen. Diese Untersuchungen bildeten die Grundlage der im Simulationsalgorithmus berücksichtigten instrumentellen Fehlerquellen: Mikrorauigkeit, Reflektivitäts- und Formfehler der Plattenoberflächen der FPIs, das Photonenrauschen, dem Öffnungsverhältnis des Strahlengangs und der Abstand der einzelnen FPIs zu einer definierten Fokalebene des Teleskopes. Formfehler, die Mikrorauigkeit und Reflektivitätsfehler der Plattenoberflächen der FPIs verschieben und verbreitern zum Beispiel das zu beobachtende Linienprofil. Daher wird ein Fehler in zu ermittelnden Dopplergeschwindigkeits- oder Halbwertsbreitenkarten der solaren Oberfläche induziert. Außerdem gibt der Photonenfluss, bzw. das Photonenrauschen die Sensibilität für Messungen der magnetischen Feldstärke vor. Zum Studium der Messgenauigkeit des Filterinstrumentes wurden Beobachtungen der ruhigen Sonne in der Photosphäre simuliert und an Hand dessen der Einfluss instrumenteller Fehler angegeben. In der vorliegenden Arbeit wurde der Einfluss zweier unterschiedliche Konfigurationen des Instrumentes auf wissenschaftliche Sonnenbeobachtungen untersucht: Instrument 1 mit einer spektralen Bandbreite 3.8pm und Instrument 2 mit 6.1pm (die spektralen Bandbreiten gelten für eine Wellenlänge von 630 nm). In den Simulationen wurden die Positionen der FPIs im optischen Strahlengang einmal als theoretisch genau in der Fokalebene liegend angenommen und das andere mal in einem spezifischem Abstand hierzu, wodurch der Effekt einer defokussierten Installation der einzelnen Interferometer untersucht werden konnte. Ergebnisse Die Simulationsergebnisse für die Mikrorauigkeiten konnten zeigen, dass eine defokussierte Installation der FPIs im Strahlengang, in Abhängigkeit zum Öffnungsverhältnis, die induzierten Fehler in den Linienkernpositionen reduziert, jedoch die Halbwertsbreiten stark zunehmen. Außerdem konnte der in dieser Arbeit entwickelte Kalibrationsalgorithmus an Hand der Simulationen verifiziert werden und stellt ein effektives Werkzeug zur Reduzierung der induzierten Linienverschiebungen, bzw. Dopplergeschwindigkeitsfehler um einen Faktor 10 dar. Zusammenfassend wurden aus den simulierten Beobachtungen und der Effektivität der Kalibrationsmethode die Grenzwerte für die Oberflächenqualität der FPIs für den Herstellungsprozess abgeleitet, sodass die geforderte physikalische Messgenauigkeit erfüllt ist. Aus einem Vergleich beider Instrumente konnte gezeigt werden, dass für die geforderte Messgenauigkeiten das Instrument mit geringerer spektraler Auflösung die Anforderungen am Besten erfüllt und somit realisiert wird. Ausblick In der vorliegenden Arbeit wurde ein Softwarepaket entwickelt, welches die relevanten, beeinflussenden Parameter auf wissenschaftliche Beobachtungen mit einem zweidimensionalen Multi-Fabry-Pérot-Spektrometer mit Polarisationsmodulator beschreibt. Für zukünftige Projekte steht nun ein Werkzeug zu Verfügung, mit Hilfe dessen verschiedene Instrumentenkonfigurationen an Hand simulierter Beobachtungen getestet und optimiert werden können. Somit ist eine Möglichkeit geschaffen, die benötigte Oberflächenqualität der FPIs, die Form und Transmission des Vorfilter und die Effizienz des Polarisationsmodulators aus Bedingungen an die Messgenauigkeit abzuleiten. Zusätzlich kann das hier entwickelte Softwarepaket auch dazu verwendet werden, Beobachtungsszenarien zu entwickeln (Belichtungszeiten, Anzahl spektraler Abtastschritte, Akkumulationen, ...), welche von der Größe und zeitlichen Entwicklung, den zu erwartenden zugehörigen Magnetfeldern und dem Photonenfluss in der Detektorebene der zu untersuchenden solaren Strukturen vorgegeben wird.
  • Item
    Inferences of the deep solar meridional flow
    (Freiburg : Universität Freiburg, 2017) Böning, Vincent Gebhard Andreas
    Understanding the solar meridional flow is important for uncovering the origin of the solar activity cycle. Yet, recent helioseismic estimates of this flow have come to conflicting conclusions in deeper layers of the solar interior, i.e., at depths below about 0.9 solar radii. The aim of this thesis is to contribute to a better understanding of the deep solar meridional flow. Time-distance helioseismology is the major method for investigating this flow. In this method, travel times of waves propagating between pairs of locations on the solar surface are measured. Until now, the travel-time measurements have been modeled using the ray approximation, which assumes that waves travel along infinitely thin ray paths between these locations. In contrast, the scattering of the full wave field in the solar interior due to the flow is modeled in first order by the Born approximation. It is in general a more accurate model of the physics in the solar interior. In a first step, an existing model for calculating the sensitivity of travel-time measu- rements to solar interior flows using the Born approximation is extended from Cartesian to spherical geometry. The results are succesfully compared to the Cartesian ones and are tested for self-consistency. In a second step, the newly developed model is validated using an existing numerical simulation of linear wave propagation in the Sun. An inversion of artificial travel times for meridional flow shows excellent agreement for noiseless data and reproduces many features in the input flow profile in the case of noisy data. Finally, the new method is used to infer the deep meridional flow. I used Global Oscillation Network Group (GONG) data that were earlier analyzed using the ray approximation and I employed the same Substractive Optimized Local Averaging (SOLA) inversion technique as in the earlier study. Using an existing formula for the covariance of travel-time measurements, it is shown that the assumption of uncorrelated errors from earlier studies leads to errors in the inverted flows being underestimated by a factor of about two to four. The inverted meridional flow above about 0.85 solar radii confirms the earlier results from ray theory regarding the general pattern of the flow, especially regarding a shallow return flow at about 0.9 solar radii, with some differences in the magnitude of the flow. Below about 0.85 solar radii, the inversion result depends on the thresholds used in the singular value decomposition. One result is again similar to the original regarding its general single-cell shape. Other results show a multi-cell structure in the southern hemisphere with two or three cells stacked radially. However, both the single-cell and the multi-cell flow profiles are consistent with the measured travel times within the measurement errors. To reach an unambiguous conclusion on the meridional flow below about 0.85 solar radii, the errors in the measured travel times have to be decreased considerably in future studies. For now, I conclude that the existing controversy of recent measurements of the deep meridional flow is relaxed by properly taking the associated errors into account.
  • Item
    Precision spectroscopy with a frequency-comb-calibrated solar spectrograph
    (Freiburg : Universität Freiburg, 2015) Doerr, Hans-Peter
    The measurement of the velocity field of the plasma at the solar surface is a standard diagnostic tool in observational solar physics. Detailed information about the energy transport as well as on the stratification of temperature, pressure and magnetic fields in the solar atmosphere are encoded in Doppler shifts and in the precise shape of the spectral lines. The available instruments deliver data of excellent quality and precision. However, absolute wavelength calibration in solar spectroscopy was so far mostly limited to indirect methods and in general suffers from large systematic uncertainties of the order of 100 m/s. During the course of this thesis, a novel wavelength calibration system based on a laser frequency comb was deployed to the solar Vacuum Tower Telescope (VTT), Tenerife, with the goal of enabling highly accurate solar wavelength measurements at the level of 1 m/s on an absolute scale. The frequency comb was developed in a collaboration between the Kiepenheuer-Institute for Solar Physics, Freiburg, Germany and the Max Planck Institute for Quantum Optics, Garching, Germany. The efforts cumulated in the new prototype instrument LARS (Lars is an Absolute Reference Spectrograph) for solar precision spectroscopy which is in preliminary scientific operation since~2013. The instrument is based on the high-resolution echelle spectrograph of the VTT for which feed optics based on single-mode optical fibres were developed for this project. The setup routinely achieves an absolute calibration accuracy of 60 cm/s and a repeatability of 2.5 cm/s. An unprecedented repeatability of only 0.32 cm/s could be demonstrated with a differential calibration scheme. In combination with the high spectral resolving power of the spectrograph of 7x10^5 and virtually absent internal scattered light, LARS provides a spectral purity and fidelity that previously was the domain of Fourier-transform spectrometers only. The instrument therefore provides unique capabilities for precision spectroscopy of the Sun and laboratory light sources. The first scientific observations aimed at measuring the accurate wavelengths of selected solar Fraunhofer lines to characterise the so-called convective blue shift and its centre to limb variation. The convective blueshifts were derived with respect to laboratory wavelengths that were obtained from spectral lamps measured with the same instrument. The measurements agree with previous studies but provide a way higher accuracy. The data is only partially compatible with numerical simulations that were published recently. Further measurements were carried out to provide the absolute wavelengths of telluric O2 lines that are commonly used for wavelength calibration. With an accuracy of 1 m/s, these new measurements are two orders of magnitude better than existing data.
  • Item
    Wave phenomena in sunspots
    (Freiburg : Universität Freiburg, 2015) Löhner-Böttcher, Johannes
    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the ‘umbral flashes’ and ‘running penumbral waves’ as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 – 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the magnetic field lines. Signatures of umbral flashes and running penumbral waves are found already in the middle to upper photosphere. The signal and velocity increases toward the chromosphere. The shock wave behavior of the umbral flashes is confirmed by the evolving saw-tooth pattern in velocity and the strong downward motion of the plasma right after the passage of the shock front. The power spectra and peak periods of sunspot waves vary significantly with atmospheric altitude and position within the sunspot. In the vertical field of the umbra, the mixture of wave periods in the lower photosphere transforms into a domination of the 2.5min range in the upper photosphere and chromosphere. In the differentially inclined penumbra, the dominating wave periods increase with radial distance. The acoustic cut-off frequency which blocks the propagation of long-period waves is considered to increase with the field inclination and the ambient sound speed. The reconstruction of the sunspot’s magnetic field inclination based on the peak period distribution yields consistent results with the inferred photospheric and extrapolated coronal magnetic field.