Search Results

Now showing 1 - 10 of 40
  • Item
    Swallowtail on the shore
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2014) Buchweitz, Ragnar-Olaf; Faber, Eleonore
    Platonic solids, Felix Klein, H.S.M. Coxeter and a flap of a swallowtail: The five Platonic solids tetrahedron, cube, octahedron, icosahedron and dodecahedron have always attracted much curiosity from mathematicians, not only for their sheer beauty but also because of their many symmetry properties. In this snapshot we will start from these symmetries, move on to groups, singularities, and finally find the connection between a tetrahedron and a “swallowtail”. Our running example is the tetrahedron, but every construction can be carried out with any other of the Platonic solids.
  • Item
    Solving quadratic equations in many variables
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2017) Tignol, Jean-Pierre
    Fields are number systems in which every linear equation has a solution, such as the set of all rational numbers Q or the set of all real numbers R. All fields have the same properties in relation with systems of linear equations, but quadratic equations behave differently from field to field. Is there a field in which every quadratic equation in five variables has a solution, but some quadratic equation in four variables has no solution? The answer is in this snapshot.
  • Item
    Snake graphs, perfect matchings and continued fractions
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2019) Schiffler, Ralf
    A continued fraction is a way of representing a real number by a sequence of integers. We present a new way to think about these continued fractions using snake graphs, which are sequences of squares in the plane. You start with one square, add another to the right or to the top, then another to the right or the top of the previous one, and so on. Each continued fraction corresponds to a snake graph and vice versa, via “perfect matchings” of the snake graph. We explain what this means and why a mathematician would call this a combinatorial realization of continued fractions.
  • Item
    From computer algorithms to quantum field theory: an introduction to operads
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2015) Krähmer, Ulrich
    An operad is an abstract mathematical tool encoding operations on specific mathematical structures. It finds applications in many areas of mathematics and related fields. This snapshot explains the concept of an operad and of an algebra over an operad, with a view towards a conjecture formulated by the mathematician Pierre Deligne. Deligne’s (by now proven) conjecture also gives deep inights into mathematical physics.
  • Item
    Das Problem der Kugelpackung
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2016) Dostert, Maria; Krupp, Stefan; Rolfes, Jan Hendrik
    Wie würdest du Tennisbälle oder Orangen stapeln? Oder allgemeiner formuliert: Wie dicht lassen sich identische 3-dimensionale Objekte überschneidungsfrei anordnen? Das Problem, welches auch Anwendungen in der digitalen Kommunikation hat, hört sich einfach an, ist jedoch für Kugeln in höheren Dimensionen noch immer ungelöst. Sogar die Berechnung guter Näherungslösungen ist für die meisten Dimensionen schwierig.
  • Item
    Zopfgruppen, die Yang–Baxter-Gleichung und Unterfaktoren
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2021) Lechner, Gandalf
    Die Yang–Baxter-Gleichung ist eine faszinierende Gleichung, die in vielen Gebieten der Physik und der Mathematik auftritt und die am besten diagrammatisch dargestellt wird. Dieser Snapshot schlägt einen weiten Bogen vom Zöpfeflechten über die Yang–Baxter- Gleichung bis hin zur aktuellen Forschung zu Systemen von unendlichdimensionalen Algebren, die wir „Unterfaktoren“ nennen.
  • Item
    Algebra, matrices, and computers
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2019) Detinko, Alla; Flannery, Dane; Hulpke, Alexander
    What part does algebra play in representing the real world abstractly? How can algebra be used to solve hard mathematical problems with the aid of modern computing technology? We provide answers to these questions that rely on the theory of matrix groups and new methods for handling matrix groups in a computer.
  • Item
    The ternary Goldbach problem
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2014) Helfgott, Harald
    Leonhard Euler (1707–1783) – one of the greatest mathematicians of the eighteenth century and of all times – often corresponded with a friend of his, Christian Goldbach (1690–1764), an amateur and polymath who lived and worked in Russia, just like Euler himself. In a letter written in June 1742, Goldbach made a conjecture – that is, an educated guess – on prime numbers: "Es scheinet wenigstens, dass eine jede Zahl, die größer ist als 2, ein aggregatum trium numerorum primorum sey. (It seems (...) that every positive integer greater than 2 can be written as the sum of three prime numbers.)" In this snapshot, we will describe to what extent the mathematical community has resolved Goldbach's conjecture, with some emphasis on recent progress.
  • Item
    Quantum symmetry
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2020) Weber, Moritz
    In mathematics, symmetry is usually captured using the formalism of groups. However, the developments of the past few decades revealed the need to go beyond groups: to “quantum groups”. We explain the passage from spaces to quantum spaces, from groups to quantum groups, and from symmetry to quantum symmetry, following an analytical approach.
  • Item
    Searching for the Monster in the Trees
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2022) Craven, David A.
    The Monster finite simple group is almost unimaginably large, with about 8 × 1053 elements in it. Trying to understand such an immense object requires both theory and computer programs. In this snapshot, we discuss finite groups, representations, and finally Brauer trees, which offer some new understanding of this vast and intricate structure.