Search Results

Now showing 1 - 2 of 2
  • Item
    A Recommender System For Open Educational Videos Based On Skill Requirements
    (Ithaca, NY : Cornell University, 2020) Tavakoli, Mohammadreza; Hakimov, Sherzod; Ewerth, Ralph; Kismihók, Gábor
    In this paper, we suggest a novel method to help learners find relevant open educational videos to master skills demanded on the labour market. We have built a prototype, which 1) applies text classification and text mining methods on job vacancy announcements to match jobs and their required skills; 2) predicts the quality of videos; and 3) creates an open educational video recommender system to suggest personalized learning content to learners. For the first evaluation of this prototype we focused on the area of data science related jobs. Our prototype was evaluated by in-depth, semi-structured interviews. 15 subject matter experts provided feedback to assess how our recommender prototype performs in terms of its objectives, logic, and contribution to learning. More than 250 videos were recommended, and 82.8% of these recommendations were treated as useful by the interviewees. Moreover, interviews revealed that our personalized video recommender system, has the potential to improve the learning experience.
  • Item
    Extracting Topics from Open Educational Resources
    (Ithaca, NY : Cornell University, 2020) Molavi, Mohammadreza; Tavakoli, Mohammadreza; Kismihók, Gábor
    In recent years, Open Educational Resources (OERs) were earmarked as critical when mitigating the increasing need for education globally. Obviously, OERs have high-potential to satisfy learners in many different circumstances, as they are available in a wide range of contexts. However, the low-quality of OER metadata, in general, is one of the main reasons behind the lack of personalised services such as search and recommendation. As a result, the applicability of OERs remains limited. Nevertheless, OER metadata about covered topics (subjects) is essentially required by learners to build effective learning pathways towards their individual learning objectives. Therefore, in this paper, we report on a work in progress project proposing an OER topic extraction approach, applying text mining techniques, to generate high-quality OER metadata about topic distribution. This is done by: 1) collecting 123 lectures from Coursera and Khan Academy in the area of data science related skills, 2) applying Latent Dirichlet Allocation (LDA) on the collected resources in order to extract existing topics related to these skills, and 3) defining topic distributions covered by a particular OER. To evaluate our model, we used the data-set of educational resources from Youtube, and compared our topic distribution results with their manually defined target topics with the help of 3 experts in the area of data science. As a result, our model extracted topics with 79% of F1-score.