Search Results

Now showing 1 - 10 of 88
Loading...
Thumbnail Image
Item

Sperm Micromotors for Cargo Delivery through Flowing Blood

2020, Xu, Haifeng, Medina-Sánchez, Mariana, Maitz, Manfred F., Werner, Carsten, Schmidt, Oliver G.

Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system.

Loading...
Thumbnail Image
Item

Melt mixed composites of polypropylene with singlewalled carbon nanotubes for thermoelectric applications: Switching from p- to n-type behavior by additive addition

2019, Pötschke; Petra, Krause, Beate, Luo, Jinji

Composites were prepared with polypropylene (PP) as the matrix and singlewalled CNTs (SWCNTs) of the type TUBALL from OCSiAl Ltd. as the conducting component by melt processing in a small-scale twin-screw compounder. In order to switch the typical p-type behavior of such composites from positive Seebeck coefficients (S) into n-type behavior with negative Seebeck coefficients, a non-ionic surfactant polyoxyethylene 20 cetyl ether (Brij58) was used and compared with a PEG additive, which was shown previously to be able to induce such switching. For PP-2 wt% SWCNT composites Brij58 is shown to result in n-type composites. The negative S values (up to −48.2 µV/K) are not as high as in the case of previous results using PEG (−56.6 µV/K). However, due to the more pronounced effect of Brij58 on the electrical conductivity, the achieved power factors are higher and reach a maximum of 0.144 µW/(m·K2) compared to previous 0.078 µW/(m·K2) with PEG. Dispersion improvement depends on the type of SWCNTs obtained by using varied synthesis/treatment conditions. Solution prepared composites of PEG with SWCNTs also have negative S values, indicating the donation of electrons from PEG to the SWCNTs. However, such composites are brittle and not suitable as thermoelectric materials.

Loading...
Thumbnail Image
Item

Influence of graphite and SEBS addition on thermal and electrical conductivity and mechanical properties of polypropylene composites

2017, Krause, Beate, Cohnen, A., Pötschke, Petra, Hickmann, T., Koppler, D., Proksch, B., Kersting, T., Hopmann, C.

In this study, composites based on polypropylene (PP) and different graphite fillers were melt mixed using small scale microcompounder Xplore DSM15 as well as lab-scale co-rotating twin screw extruder Coperion ZSK26Mc. The measurements of the electrical and thermal conductivity as well as mechanical properties of the composites were performed on pressed plates. It was found that the addition of graphite powders having different particle size distributions leads to different increases of the thermal conductivity. For synthetic graphite, the PP composites filled with TIMCAL Timrex® KS500 reached the highest value of thermal conductivity of 0.52 W/(m·K) at 10 vol% loading, whereas this composite was not electrical conductive. Furthermore, the influence of a styrene-ethylene-butylene-styrene block copolymer (SEBS) based impact modifier on the mechanical properties of PP filled with 80 wt% of different synthetic graphites was investigated. For that the proportion of SEBS in the PP component was varied systematically. The conductivities were influenced by the type of graphite and the content of impact modifier. The results indicate that the impact strength of the composite containing TIMCAL Timrex® KS300-1250 can be increased by approx. 100 % when replacing 50 wt% of the PP component by SEBS.

Loading...
Thumbnail Image
Item

Toward Representing Research Contributions in Scholarly Knowledge Graphs Using Knowledge Graph Cells

2020, Vogt, Lars, D'Souza, Jennifer, Stocker, Markus, Auer, Sören

There is currently a gap between the natural language expression of scholarly publications and their structured semantic content modeling to enable intelligent content search. With the volume of research growing exponentially every year, a search feature operating over semantically structured content is compelling. Toward this end, in this work, we propose a novel semantic data model for modeling the contribution of scientific investigations. Our model, i.e. the Research Contribution Model (RCM), includes a schema of pertinent concepts highlighting six core information units, viz. Objective, Method, Activity, Agent, Material, and Result, on which the contribution hinges. It comprises bottom-up design considerations made from three scientific domains, viz. Medicine, Computer Science, and Agriculture, which we highlight as case studies. For its implementation in a knowledge graph application we introduce the idea of building blocks called Knowledge Graph Cells (KGC), which provide the following characteristics: (1) they limit the expressibility of ontologies to what is relevant in a knowledge graph regarding specific concepts on the theme of research contributions; (2) they are expressible via ABox and TBox expressions; (3) they enforce a certain level of data consistency by ensuring that a uniform modeling scheme is followed through rules and input controls; (4) they organize the knowledge graph into named graphs; (5) they provide information for the front end for displaying the knowledge graph in a human-readable form such as HTML pages; and (6) they can be seamlessly integrated into any existing publishing process thatsupports form-based input abstracting its semantic technicalities including RDF semantification from the user. Thus RCM joins the trend of existing work toward enhanced digitalization of scholarly publication enabled by an RDF semantification as a knowledge graph fostering the evolution of the scholarly publications beyond written text.

Loading...
Thumbnail Image
Item

An OER Recommender System Supporting Accessibility Requirements

2020, Elias, Mirette, Tavakoli, Mohammadreza, Lohmann, Steffen, Kismihok, Gabor, Auer, Sören, Gurreiro, Tiago, Nicolau, Hugo, Moffatt, Karyn

Open Educational Resources are becoming a significant source of learning that are widely used for various educational purposes and levels. Learners have diverse backgrounds and needs, especially when it comes to learners with accessibility requirements. Persons with disabilities have significantly lower employment rates partly due to the lack of access to education and vocational rehabilitation and training. It is not surprising therefore, that providing high quality OERs that facilitate the self-development towards specific jobs and skills on the labor market in the light of special preferences of learners with disabilities is difficult. In this paper, we introduce a personalized OER recommeder system that considers skills, occupations, and accessibility properties of learners to retrieve the most adequate and high-quality OERs. This is done by: 1) describing the profile of learners with disabilities, 2) collecting and analysing more than 1,500 OERs, 3) filtering OERs based on their accessibility features and predicted quality, and 4) providing personalised OER recommendations for learners according to their accessibility needs. As a result, the OERs retrieved by our method proved to satisfy more accessibility checks than other OERs. Moreover, we evaluated our results with five experts in educating people with visual and cognitive impairments. The evaluation showed that our recommendations are potentially helpful for learners with accessibility needs.

Loading...
Thumbnail Image
Item

Effect of additives on MWCNT dispersion and electrical percolation in polyamide 12 composites

2017, Socher, Robert, Krause, Beate, Pötschke, Petra

The aim of this study was to decrease the electrical percolation threshold of multiwalled carbon nanotubes (MWCNTs) in a polyamide 12 matrix by the use of additives. Different kinds of additives were selected which either interact with the π-system of the MWCNTs (imidazolium based ionic liquid (IL) and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)) or improve the MWCNT wettability (cyclic butylene terephthalate, CBT). The composites were melt mixed using a DACA microcompounder. The electrical percolation threshold for PA12/MWCNT without additives, measured on compression molded plates, was found between 2.0 and 2.25 wt%. With all used additives, a significant reduction of the electrical percolation threshold could be achieved. Whereas the addition of IL and CBT resulted in MWCNT percolation at around 1.0 wt%, a slightly higher percolation threshold between 1.0 and 1.5 wt% was found for PTCDA as an additive. Interestingly, the electrical resistivity at higher loadings was decreased by nearly two decades when using CBT and one decade after application of PTCDA, whereas IL did not contribute to lower values in this range. In all cases macrodispersion as assessed by light microscopy was not improved and even worse as compared to non-modified composites. In summary, the results illustrate that these kinds of additives are able to improve the performance of PA12 based MWCNT nanocomposites.

Loading...
Thumbnail Image
Item

Accessibility and Personalization in OpenCourseWare : An Inclusive Development Approach

2020, Elias, Mirette, Ruckhaus, Edna, Draffan, E.A., James, Abi, Suárez-Figueroa, Mari Carmen, Lohmann, Steffen, Khiat, Abderrahmane, Auer, Sören, Chang, Maiga, Sampson, Demetrios G., Huang, Ronghuai, Hooshyar, Danial, Chen, Nian-Shing, Kinshuk, Pedaste, Margus

OpenCourseWare (OCW) has become a desirable source for sharing free educational resources which means there will always be users with differing needs. It is therefore the responsibility of OCW platform developers to consider accessibility as one of their prioritized requirements to ensure ease of use for all, including those with disabilities. However, the main challenge when creating an accessible platform is the ability to address all the different types of barriers that might affect those with a wide range of physical, sensory and cognitive impairments. This article discusses accessibility and personalization strategies and their realisation in the SlideWiki platform, in order to facilitate the development of accessible OCW. Previously, accessibility was seen as a complementary feature that can be tackled in the implementation phase. However, a meaningful integration of accessibility features requires thoughtful consideration during all project phases with active involvement of related stakeholders. The evaluation results and lessons learned from the SlideWiki development process have the potential to assist in the development of other systems that aim for an inclusive approach. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Loading...
Thumbnail Image
Item

Effects of high energy electrons on the properties of polyethylene / multiwalled carbon nanotubes composites: Comparison of as-grown and oxygen-functionalised MWCNT

2014, Krause, Beate, Pötschke, Petra, Gohs, U.

Polymer modification with high energy electrons (EB) is well established in different applications for many years. It is used for crosslinking, curing, degrading, grafting of polymeric materials and polymerisation of monomers. In contrast to this traditional method, electron induced reactive processing (EIReP) combines the polymer modification with high energy electrons and the melt mixing process. This novel reactive method was used to prepare polymer blends and composites. In this study, both methods were used for the preparation of polyethylene (PE)/ multiwalled carbon nanotubes (MWCNT) composites in the presence of a coupling agent. The influence of MWCNT and type of electron treatment on the gel content, the thermal conductivity, rheological, and electrical properties was investigated whereby as-grown and oxidised MWCNT were used. In the presence of a coupling agent and at an absorbed dose of 40 kGy, the gel content increased from 57 % for the pure PE to 74 % or 88 % by the addition of as-grown (Baytubes® C150P) or oxidised MWCNT, respectively. In comparison to the composites containing the as-grown MWCNTs, the use of the oxidised MWCNTs led to higher melt viscosity and higher storage modulus due to higher yield of filler polymer couplings. The melt viscosity increased due to the addition of MWCNT and crosslinking of PE. The thermal conductivity increased to about 150 % and showed no dependence on the kind of MWCNT and the type of electron treatment. In contrast, the lowest value of electrical volume resistivity was found for the non-irradiated samples and after state of the art electron treatment without any influence of the type of MWCNT. In the case of EIReP, the volume resistivity increased by 2 (as-grown MWCNT) or 3 decades (oxidised MWCNT) depending on the process parameters. © 2014 American Institute of Physics.

Loading...
Thumbnail Image
Item

TinyGenius: Intertwining natural language processing with microtask crowdsourcing for scholarly knowledge graph creation

2022, Oelen, Allard, Stocker, Markus, Auer, Sören, Aizawa, Akiko

As the number of published scholarly articles grows steadily each year, new methods are needed to organize scholarly knowledge so that it can be more efficiently discovered and used. Natural Language Processing (NLP) techniques are able to autonomously process scholarly articles at scale and to create machine readable representations of the article content. However, autonomous NLP methods are by far not sufficiently accurate to create a high-quality knowledge graph. Yet quality is crucial for the graph to be useful in practice. We present TinyGenius, a methodology to validate NLP-extracted scholarly knowledge statements using microtasks performed with crowdsourcing. The scholarly context in which the crowd workers operate has multiple challenges. The explainability of the employed NLP methods is crucial to provide context in order to support the decision process of crowd workers. We employed TinyGenius to populate a paper-centric knowledge graph, using five distinct NLP methods. In the end, the resulting knowledge graph serves as a digital library for scholarly articles.

Loading...
Thumbnail Image
Item

Quality Prediction of Open Educational Resources A Metadata-based Approach

2020, Tavakoli, Mohammadreza, Elias, Mirette, Kismihók, Gábor, Auer, Sören, Chang, Maiga, Sampson, Demetrios G., Huang, Ronghuai, Hooshyar, Danial, Chen, Nian-Shing, Kinshuk, Pedaste, Margus

In the recent decade, online learning environments have accumulated millions of Open Educational Resources (OERs). However, for learners, finding relevant and high quality OERs is a complicated and time-consuming activity. Furthermore, metadata play a key role in offering high quality services such as recommendation and search. Metadata can also be used for automatic OER quality control as, in the light of the continuously increasing number of OERs, manual quality control is getting more and more difficult. In this work, we collected the metadata of 8,887 OERs to perform an exploratory data analysis to observe the effect of quality control on metadata quality. Subsequently, we propose an OER metadata scoring model, and build a metadata-based prediction model to anticipate the quality of OERs. Based on our data and model, we were able to detect high-quality OERs with the F1 score of 94.6%. © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.