Search Results

Now showing 1 - 10 of 30
  • Item
    Anisothermal chemical reactions: Onsager--Machlup and macroscopic fluctuation theory
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Renger, D. R. Michiel
    We study a micro and macroscopic model for chemical reactions with feedback between reactions and temperature of the solute. The first result concerns the quasipotential as the large-deviation rate of the microscopic invariant measure. The second result is an application of modern Onsager-Machlup theory to the pathwise large deviations, in case the system is in detailed balance. The third result is an application of macroscopic fluctuation theory to the reaction flux large deviations, in case the system is in complex balance.
  • Item
    Pathwise McKean--Vlasov theory with additive noise
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Coghi, Michele; Deuschel, Jean-Dominique; Friz, Peter; Maurelli, Mario
    We take a pathwise approach to classical McKean-Vlasov stochastic differential equations with additive noise, as e.g. exposed in Sznitmann [34]. Our study was prompted by some concrete problems in battery modelling [19], and also by recent progress on rough-pathwise McKean-Vlasov theory, notably Cass--Lyons [9], and then Bailleul, Catellier and Delarue [4]. Such a ``pathwise McKean-Vlasov theory'' can be traced back to Tanaka [36]. This paper can be seen as an attempt to advertize the ideas, power and simplicity of the pathwise appproach, not so easily extracted from [4, 9, 36]. As novel applications we discuss mean field convergence without a priori independence and exchangeability assumption; common noise and reflecting boundaries. Last not least, we generalize Dawson--Gärtner large deviations to a non-Brownian noise setting.
  • Item
    Large deviations for cluster size distributions in a continuous classical many-body system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Jansen, Sabine; König, Wolfgang; Metzger, Bernd
    An interesting problem in statistical physics is the condensation of classical particles in droplets or clusters when the pair-interaction is given by a stable Lennard-Jones-type potential. We study two aspects of this problem. We start by deriving a large deviations principle for the cluster size distribution for any inverse temperature $betain(0,infty)$ and particle density $rhoin(0,rho_rmcp)$ in the thermodynamic limit. Here $rho_rmcp >0$ is the close packing density. While in general the rate function is an abstract object, our second main result is the $Gamma$-convergence of the rate function towards an explicit limiting rate function in the low-temperature dilute limit $betatoinfty$, $rho downarrow 0$ such that $-beta^-1logrhoto nu$ for some $nuin(0,infty)$. The limiting rate function and its minimisers appeared in recent work, where the temperature and the particle density were coupled with the particle number. In the de-coupled limit considered here, we prove that just one cluster size is dominant, depending on the parameter $nu$. Under additional assumptions on the potential, the $Gamma$-convergence along curves can be strengthened to uniform bounds, valid in a low-temperature, low-density rectangle.
  • Item
    A large-deviations approach to gelation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Andreis, Luisa; König, Wolfgang; Patterson, Robert
    A @large-deviations principle (LDP) is derived for the state, at fixed time, of the multiplicative coalescent in the large particle number limit. The rate function is explicit and describes each of the three parts of the state: microscopic, mesoscopic and macroscopic. In particular, it clearly captures the well known gelation phase transition given by the formation of a particle containing a positive fraction of the system mass at time t = 1. Via a standard map of the multiplicative coalescent onto a time-dependent version of the Erdos-Rényi random graph, our results can also be rephrased as an LDP for the component sizes in that graph. Our proofs rely on estimates and asymptotics for the probability that smaller Erdos-Rényi graphs are connected.
  • Item
    Random walk on random walks: Higher dimensions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Blondel, Oriane; Hilário, Marcelo R.; Santos, Renato Soares dos; Sidoravicius, Vladas; Teixeira, Augusto
    We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels without the assumption of uniform ellipticity or nearest-neighbour jumps. Specifically, we obtain a strong law of large numbers, a functional central limit theorem and large deviation estimates for the position of the random walker under the annealed law in a high density regime. The main obstacle is the intrinsic lack of monotonicity in higher-dimensional, non-nearest neighbour settings. Here we develop more general renormalization and renewal schemes that allow us to overcome this issue. As a second application of our methods, we provide an alternative proof of the ballistic behaviour of the front of (the discrete-time version of) the infection model introduced in [23].
  • Item
    Hydrodynamic limit for the A + B → Ø model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Bovier, Anton; Černý, Jiri
    We study a two-species interacting particle model on a subset of $Z$ with open boundaries. The two species are injected with time dependent rate on the left, resp. right boundary. Particles of different species annihilate when they try to occupy the same site. This model has been proposed as a simple model for the dynamics of an ``order book'' on a stock market. We consider the hydrodynamic scaling limit for the empirical process and prove a large deviation principle that implies convergence to the solution of a non-linear parabolic equation.
  • Item
    Brownian occupation measures, compactness and large deviations: Pair interaction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Mukherjee, Chiranjib
    Continuing with the study of compactness and large deviations initiated in citeMV14, we turn to the analysis of Gibbs measures defined on two independent Brownian paths in $R^d$ interacting through a mutual self-attraction. This is expressed by the Hamiltonian $intint_R^2d V(x-y) mu(d x)nu(d y)$ with two probability measures $mu$ and $nu$ representing the occupation measures of two independent Brownian motions. Due to the mixed product of two independent measures, the crucial shift-invariance requirement of citeMV14 is slightly lost. However, such a mixed product of measures inspires a compactification of the quotient space of orbits of product measures, which is structurally slightly different from the one introduced in citeMV14. The orbits of the product of independent occupation measures are embedded in such a compactfication and a strong large deviation principle for these objects enables us to prove the desired asymptotic localization properties of the joint behavior of two independent paths under the Gibbs transformation. As a second application, we study the spatially smoothened parabolic Anderson model in $R^d$ with white noise potential and provide a direct computation of the annealed Lyapunov exponents of the smoothened solutions when the smoothing parameter goes to $0$.
  • Item
    A large-deviations principle for all the components in a sparse inhomogeneous random graph
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Andreis, Luisa; König, Wolfgang; Langhammer, Heide; Patterson, Robert I. A.
    We study an inhomogeneous sparse random graph, GN, on [N] = { 1,...,N } as introduced in a seminal paper [BJR07] by Bollobás, Janson and Riordan (2007): vertices have a type (here in a compact metric space S), and edges between different vertices occur randomly and independently over all vertex pairs, with a probability depending on the two vertex types. In the limit N → ∞ , we consider the sparse regime, where the average degree is O(1). We prove a large-deviations principle with explicit rate function for the statistics of the collection of all the connected components, registered according to their vertex type sets, and distinguished according to being microscopic (of finite size) or macroscopic (of size ≈ N). In doing so, we derive explicit logarithmic asymptotics for the probability that GN is connected. We present a full analysis of the rate function including its minimizers. From this analysis we deduce a number of limit laws, conditional and unconditional, which provide comprehensive information about all the microscopic and macroscopic components of GN. In particular, we recover the criterion for the existence of the phase transition given in [BJR07].
  • Item
    Stein variational gradient descent: Many-particle and long-time asymptotics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Nüsken, Nikolas; Renger, D. R. Michiel
    Stein variational gradient descent (SVGD) refers to a class of methods for Bayesian inference based on interacting particle systems. In this paper, we consider the originally proposed deterministic dynamics as well as a stochastic variant, each of which represent one of the two main paradigms in Bayesian computational statistics: emphvariational inference and emphMarkov chain Monte Carlo. As it turns out, these are tightly linked through a correspondence between gradient flow structures and large-deviation principles rooted in statistical physics. To expose this relationship, we develop the cotangent space construction for the Stein geometry, prove its basic properties, and determine the large-deviation functional governing the many-particle limit for the empirical measure. Moreover, we identify the emphStein-Fisher information (or emphkernelised Stein discrepancy) as its leading order contribution in the long-time and many-particle regime in the sense of $Gamma$-convergence, shedding some light on the finite-particle properties of SVGD. Finally, we establish a comparison principle between the Stein-Fisher information and RKHS-norms that might be of independent interest.
  • Item
    Orthogonality of fluxes in general nonlinear reaction networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Renger, D.R.Michiel; Zimmer, Johannes
    We consider the chemical reaction networks and study currents in these systems. Reviewing recent decomposition of rate functionals from large deviation theory for Markov processes, we adapt these results for reaction networks. In particular, we state a suitable generalisation of orthogonality of forces in these systems, and derive an inequality that bounds the free energy loss and Fisher information by the rate functional.