Search Results

Now showing 1 - 10 of 72
  • Item
    Trends in the composition of wet deposition: Effects of the atmospheric rehabilitation in East-Germany
    (Milton Park : Taylor & Francis, 2017) Marquardt, Wolfgang; Brüggemann, Erika; Ihle, Peter
    The chemical components in precipitation largely depend on type and quantity of emissions on the course of the air masses at the sampling site. Beginning in 1982, the concentrations of major ions in precipitation at initially 3 sites are described in total as well as arrival sectors. For regions with specific geographical or emission features, 5 to 7 sectors for every sampling site are established, e.g., Scandinavia, or the centres of brown coal combustion in the former GDR. Particulary from the sectors of the former GDR, the precipitation was over-averaged contaminated anthropogenically in the years before the political change. Some components were significantly raised in comparison to other sectors. However, acidity remained on the level of the other sectors in the 80 s. In the early 90s, anthropogenic emissions were systematically reduced partly by substitution of brown coal of inferior quality, better flue gas cleaning and partly by closing down industries. The effect of such steps on the wet deposition is being studied in a national German SANA research project (SANA: scientific program of rehabilitation of the atmosphere). In this project, the sampling sites were extended to 7 while maintaining the sampling procedure and the recording of relevant meteorological input-data. As a result, there now exists a homogeneous long-term data base allowing us to study the effects of emissions on wet deposition by the rehabilitation of the atmosphere in the former GDR. The paper focusses on changes in sulphate, nitrate, calcium, acidity, chloride and potassium concentrations in precipitation at the 3 so-called long-term sites. There are conspicuous decreases of some ions on one hand, but there is also an increase of nitrate and acidity, especially in recent years.
  • Item
    An overview of the Lagrangian experiments undertaken during the North Atlantic regional Aerosol Characterisation Experiment (ACE-2)
    (Milton Park : Taylor & Francis, 2016) Johnson, Doug W.; Osborne, Simon; Wood, Robert; Suhre, Karsten; Johnson, Randy; Businger, Steven; Quinn, Patricia K.; Wiedensohler, Alfred; Durkee, Philip A.; Russell, Lynn M.; Andreae, Meinrat O.; O’Dowd, Colin; Noone, Kevin J.; Bandy, Brian; Rudolph, J.; Rapsomanikis, Spyros
    One of the primary aims of the North Atlantic regional Aerosol Characterisation Experiment (ACE-2) was to quantify the physical and chemical processes affecting the evolution of the major aerosol types over the North Atlantic. The best, practical way of doing this is in a Lagrangian framework where a parcel of air is sampled over several tens of hours and its physical and chemical properties are intensively measured. During the intensive observational phase of ACE-2, between 15 June 1997 and 24 July 1997, 3 cloudy Lagrangian experiments and 3 cloud-free, Lagrangian experiments were undertaken between the south west tip of the Iberian Peninsula and the Canary Islands. This paper gives an overview of the aims and logistics of all of the Lagrangian experiments and compares and contrasts them to provide a framework for the more focused Lagrangian papers in this issue and future process modelling studies and parametrisation development. The characteristics of the cloudy Lagrangian experiments were remarkably different, enabling a wide range of different physical and chemical processes to be studied. In the 1st Lagrangian, a clean maritime air mass was sampled in which salt particle production, due to increased wind speed, dominated the change in the accumulation mode concentrations. In the 2nd Lagrangian, extensive cloud cover resulted in cloud processing of the aerosol in a polluted air mass, and entrainment of air from the free troposphere influenced the overall decrease in aerosol concentrations in the marine boundary layer (MBL). Very little change in aerosol characteristics was measured in the 3rd Lagrangian, where the pollution in the MBL was continually being topped up by entraining air from a residual continental boundary layer (CBL) above. From the analysis of all the Lagrangian experiments, it has been possible to formulate, and present here, a generalised description of a European continental outbreak of pollution over the sub-tropical North Atlantic.
  • Item
    Size distribution and chemical composition of marine aerosols: A compilation and review
    (Milton Park : Taylor & Francis, 2016) Heintzenberg, J.; Covert, D.C.; Van Dingenen, R.
    Some 30 years of physical and chemical marine aerosol data are reviewed to derive global-size distribution parameters and inorganic particle composition on a coarse 15°×15° grid. There are large gaps in geographical and seasonal coverage and chemical and physical aerosol characterisation. About 28% of the grid cells contain physical data while there are compositional data in some 60% of the cells. The size distribution data were parametrized in terms of 2 submicrometer log-normal distributions. The sparseness of the data did not allow zonal differentiation of the distributions. By segregating the chemical data according to the major aerosol sources, sea salt, dimethylsulfide, crustal material, combustion processes and other anthropogenic sources, much information on mass concentrations and contribution of natural and anthropogenic sources to the marine aerosol can be gleaned from the data base. There are significant meridional differences in the contributions of the different sources to the marine aerosol. Very clearly, we see though that the global marine surface atmosphere is polluted by anthropogenic sulfur. Only in the case of sulfur components did the coverage allow the presentation of very coarse seasonal distributions which reflect the spring blooms in the appropriate parts of the oceans. As an example of the potential value in comparing the marine aerosol data base to chemical transport models, global seasonal meridional MSA distributions were compared to modelled MSA distributions. The general good agreement in mass concentrations is encouraging while some latitudinal discrepancies warrant further investigations covering other aerosol components such as black carbon and metals.
  • Item
    Sources of increase in lowermost stratospheric sulphurous and carbonaceous aerosol background concentrations during 1999–2008 derived from CARIBIC flights
    (Milton Park : Taylor & Francis, 2014) Friberg, Johan; Martinsson, Bengt G.; Andersson, Sandra M.; Brenninkmeijer, Carl A.M.; Hermann, Markus; Van Velthoven, Peter F.J.; Zahn, Andreas
    This study focuses on sulphurous and carbonaceous aerosol, the major constituents of particulate matter in the lowermost stratosphere (LMS), based on in situ measurements from 1999 to 2008. Aerosol particles in the size range of 0.082 mm were collected monthly during intercontinental flights with the CARIBIC passenger aircraft, presenting the first long-term study on carbonaceous aerosol in the LMS. Elemental concentrations were derived via subsequent laboratory-based ion beam analysis. The stoichiometry indicates that the sulphurous fraction is sulphate, while an O/C ratio of 0.2 indicates that the carbonaceous aerosol is organic. The concentration of the carbonaceous component corresponded on average to approximately 25% of that of the sulphurous, and could not be explained by forest fires or biomass burning, since the average mass ratio of Fe to K was 16 times higher than typical ratios in effluents from biomass burning. The data reveal increasing concentrations of particulate sulphur and carbon with a doubling of particulate sulphur from 1999 to 2008 in the northern hemisphere LMS. Periods of elevated concentrations of particulate sulphur in the LMS are linked to downward transport of aerosol from higher altitudes, using ozone as a tracer for stratospheric air. Tropical volcanic eruptions penetrating the tropical tropopause are identified as the likely cause of the particulate sulphur and carbon increase in the LMS, where entrainment of lower tropospheric air into volcanic jets and plumes could be the cause of the carbon increase.
  • Item
    Variability of sub-micrometer particle number size distributions and concentrations in the Western Mediterranean regional background
    (Milton Park : Taylor & Francis, 2013) Cusack, Michael; Pérez, NoemÍ; Pey, Jorge; Wiedensohler, Alfred; Alastuey, Andrés
    This study focuses on the daily and seasonal variability of particle number size distributions and concentrations, performed at the Montseny (MSY) regional background station in the western Mediterranean from October 2010 to June 2011. Particle number concentrations at MSY were shown to be within range of various other sites across Europe reported in literature, but the seasonality of the particle number size distributions revealed significant differences. The Aitken mode is the dominant particle mode at MSY, with arithmetic mean concentrations of 1698 cm3, followed by the accumulation mode (877 cm3) and the nucleation mode (246 cm3). Concentrations showed a strong seasonal variability with large increases in particle number concentrations observed from the colder to warmer months. The modality of median size distributions was typically bimodal, except under polluted conditions when the size distribution was unimodal. During the colder months, the daily variation of particle number size distributions are strongly influenced by a diurnal breeze system, whereby the Aitken and accumulation modes vary similarly to PM1 and BC mass concentrations, with nocturnal minima and sharp day-time increases owing to the development of a diurnal mountain breeze. Under clean air conditions, high levels of nucleation and lower Aitken mode concentrations were measured, highlighting the importance of new particle formation as a source of particles in the absence of a significant condensation sink. During the warmer months, nucleation mode concentrations were observed to be relatively elevated both under polluted and clean conditions due to increased photochemical reactions, with enhanced subsequent growth owing to elevated concentrations of condensable organic vapours produced from biogenic volatile organic compounds, indicating that nucleation at MSY does not exclusively occur under clean air conditions. Finally, mixing of air masses between polluted and non-polluted boundary layer air, and brief changes in the air mass being sampled gave rise to unusual particle number size distributions, with specific cases of such behaviour discussed at length.
  • Item
    Aerosol particle formation events and analysis of high growth rates observed above a subarctic wetland-forest mosaic
    (Milton Park : Taylor & Francis, 2017) Svenningsson, Birgitta; Arneth, Almut; Hayward, Sean; Holst, Thomas; Massling, Andreas; Swietlicki, Erik; Hirsikko, Anne; Junninen, Heikki; Riipinen, Ilona; Vana, Marko; Dal Maso, Miikka; Hussein, Tareq; Kulmala, Markku
    An analysis of particle formation (PF) events over a subarctic mire in northern Swedenwas performed, based on number– size distributions of atmospheric aerosol particles (10–500 nm in diameter) and ions (0.4–40 nm in Tammet diameter). We present classification statistics for PF events from measurements covering the period July 2005–September 2006, with a break over the winter period. The PF event frequency peaked during the summer months, in contrast to other Scandinavian sites where the frequency is highest during spring and autumn. Our analysis includes calculated growth rates and estimates of concentrations and production rates of condensing vapour, deduced from the growth rates and condensational sink calculations, using AIS and SMPS data. Particle formation events with high growth rates (up to 50 nm h-1) occurred repeatedly. In these cases, the newly formed nucleation mode particles were often only present for periods of a few hours. On several occasions, repeated particle formation events were observed within 1 d, with differences in onset time of a few hours. These high growth rates were only observed when the condensation sink was higher than 0.001 s-1.
  • Item
    Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Freudenthaler, Volker; Esselborn, Michael; Wiegner, Matthias; Heese, Birgit; Tesche, Matthias; Ansmann, Albert; Müller, Detlef; Althausen, Dietrich; Wirth, Martin; Fix, Andreas; Ehret, Gerhard; Knippertz, Peter; Toledano, Carlos; Gasteiger, Josef; Garhammer, Markus; Seefeldner, Meinhard
    Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9◦N, –6.9◦E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.
  • Item
    Near-global aerosol mapping in the upper troposphere and lowermost stratosphere with data from the CARIBIC project
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Hermann, Markus; Weigelt, Andreas; Kapustin, Vladimir; Anderson, Bruce; Thornhill, Kenneth; Van Velthoven, Peter; Zahn, Andreas; Brenninkmeijer, Carl
    This study extrapolates aerosol data of the CARIBIC project from 1997 until June 2008 in along trajectories to compose large-scale maps and vertical profiles of submicrometre particle concentrations in the upper troposphere and lowermost stratosphere (UT/LMS). The extrapolation was validated by comparing extrapolated values with CARIBIC data measured near the respective trajectory position and by comparing extrapolated CARIBIC data to measurements by other experiments near the respective trajectory positions. Best agreement between extrapolated and measured data is achieved with particle lifetimes longer than the maximum length of used trajectories. The derived maps reveal regions of strong and frequent new particle formation, namely the Tropical Central and Western Africa with the adjacent Atlantic, South America, the Caribbean and Southeast Asia. These regions of particle formation coincide with those of frequent deep convective clouds. Vertical particle concentration profiles for the troposphere and the stratosphere confirm statistically previous results indicating frequent new particle formation in the tropopause region. There was no statistically significant increase in Aitken mode particle concentration between the first period of CARIBIC operation, 1997–2002, and the second period, 2004–2009. However, a significant increase in concentration occurred within the latter period when considering it in isolation.
  • Item
    Doppler lidar studies of heat island effects on vertical mixing of aerosols during SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Engelmann, Ronny; Ansmann, Albert; Horn, Stefan; Seifert, Patric; Althausen, Dietrich; Tesche, Matthias; Esselborn, Michael; Fruntke, Julia; Lieke, Kirsten; Freudenthaler, Volker; Gross, Silke
    A wind Doppler lidar was deployed next to three aerosol lidars during the SAMUM–2 campaign on the main island of Cape Verde. The effects of the differential heating of the island and the surrounding ocean and the orographic impact of the capital island Santiago and the small island on its luv side, Maio, are investigated. Horizontal and vertical winds were measured in the disturbed maritime boundary layer and compared to local radiosoundings. Lidar measurements from the research aircraft Falcon and a 3-D Large Eddy Simulation (LES) model were used in addition to study the heating effects on the scale of the islands. Indications are found that these effects can widely control the downward mixing from greater heights to the surface of African aerosols, mainly Saharan dust and biomass-burning smoke, which were detected in a complex layering over the Cape Verde region.
  • Item
    Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Müller, Detlef; Gross, Silke; Ansmann, Albert; Althausen, Dietrich; Freudenthaler, Volker; Weinzierl, Bernadett; Veira, Andreas; Petzold, Andreas
    Lidar measurements of mixed dust/smoke plumes over the tropical Atlantic ocean were carried out during the winter campaign of SAMUM-2 at Cape Verde. Profiles of backscatter and extinction coefficients, lidar ratios, and Ångstr¨om exponents related to pure biomass-burning aerosol from southern West Africa were extracted from these observations. Furthermore, these findings were used as input for an inversion algorithm to retrieve microphysical properties of pure smoke. Seven measurement days were found suitable for the procedure of aerosol-type separation and successive inversion of optical data that describe biomass-burning smoke. We inferred high smoke lidar ratios of 87 ± 17 sr at 355 nm and 79 ± 17 sr at 532 nm. Smoke lidar ratios and Ångstr¨om exponents are higher compared to the ones for the dust/smoke mixture. These numbers indicate higher absorption and smaller sizes for pure smoke particles compared to the dust/smoke mixture. Inversion of the smoke data set results in mean effective radii of 0.22 ± 0.08 μm with individual results varying between 0.10 and 0.36 μm. The single-scattering albedo for pure biomass-burning smoke was found to vary between 0.63 and 0.89 with a very low mean value of 0.75 ± 0.07. This is in good agreement with findings of airborne in situ measurements which showed values of 0.77 ± 0.03. Effective radii from the inversion were similar to the ones found for the fine mode of the in situ size distributions.