Search Results

Now showing 1 - 2 of 2
  • Item
    Proximal Soil Sensing - A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?
    (San Francisco, California, US : PLOS, 2016) Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens
    Background: Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Methodology/Principal Findings: Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 mÂł soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Conclusions/Significance: Our findings suggest that PSS contributes to the spatial modelling of earthworm abundances at field scale and that it will support species distribution modelling in the attempt to understand the soil-earthworm relationships in agroecosystems.
  • Item
    Research data management in agricultural sciences in Germany: We are not yet where we want to be
    (San Francisco, California, US : PLOS, 2022) Senft, Matthias; Stahl, Ulrike; Svoboda, Nikolai
    To meet the future challenges and foster integrated and holistic research approaches in agricultural sciences, new and sustainable methods in research data management (RDM) are needed. The involvement of scientific users is a critical success factor for their development. We conducted an online survey in 2020 among different user groups in agricultural sciences about their RDM practices and needs. In total, the questionnaire contained 52 questions on information about produced and (re-)used data, data quality aspects, information about the use of standards, publication practices and legal aspects of agricultural research data, the current situation in RDM in regards to awareness, consulting and curricula as well as needs of the agricultural community in respect to future developments. We received 196 (partially) completed questionnaires from data providers, data users, infrastructure and information service providers. In addition to the diversity in the research data landscape of agricultural sciences in Germany, the study reveals challenges, deficits and uncertainties in handling research data in agricultural sciences standing in the way of access and efficient reuse of valuable research data. However, the study also suggests and discusses potential solutions to enhance data publications, facilitate and secure data re-use, ensure data quality and develop services (i.e. training, support and bundling services). Therefore, our research article provides the basis for the development of common RDM, future infrastructures and services needed to foster the cultural change in handling research data across agricultural sciences in Germany and beyond.