Search Results

Now showing 1 - 4 of 4
  • Item
    The coherent motion of Cen A dwarf satellite galaxies remains a challenge for ΛcDM cosmology
    (Les Ulis : EDP Sciences, 2021) Müller, Oliver; Pawlowski, Marcel S.; Lelli, Federico; Fahrion, Katja; Rejkuba, Marina; Hilker, Michael; Kanehisa, Jamie; Libeskind, Noam; Jerjen, Helmut
    The plane-of-satellites problem is one of the most severe small-scale challenges for the standard Λ cold dark matter (ΛCDM) cosmological model: Several dwarf galaxies around the Milky Way and Andromeda co-orbit in thin, planar structures. A similar case has been identified around the nearby elliptical galaxy Centaurus A (Cen A). In this Letter, we study the satellite system of Cen A, adding twelve new galaxies with line-of-sight velocities from VLT/MUSE observations. We find that 21 out of 28 dwarf galaxies with measured velocities share a coherent motion. Similarly, flattened and coherently moving structures are found only in 0.2% of Cen A analogs in the Illustris-TNG100 cosmological simulation, independently of whether we use its dark-matter-only or hydrodynamical run. These analogs are not co-orbiting, and they arise only by chance projection, thus they are short-lived structures in such simulations. Our findings indicate that the observed co-rotating planes of satellites are a persistent challenge for ΛCDM, which is largely independent from baryon physics. © O. Müller et al. 2021.
  • Item
    Synthetic simulations of the extragalactic sky seen by eROSITA : I. Pre-launch selection functions from Monte-Carlo simulations
    (Les Ulis : EDP Sciences, 2018) Clerc, N.; Ramos-Ceja, M.E.; Ridl, J.; Lamer, G.; Brunner, H.; Hofmann, F.; Comparat, J.; Pacaud, F.; Käfer, F.; Reiprich, T.H.; Merloni, A.; Schmid, C.; Brand, T.; Wilms, J.; Friedrich, P.; Finoguenov, A.; Dauser, T.; Kreykenbohm, I.
    Context. Studies of galaxy clusters provide stringent constraints on models of structure formation. Provided that selection effects are under control, large X-ray surveys are well suited to derive cosmological parameters, in particular those governing the dark energy equation of state. Aims. We forecast the capabilities of the all-sky eROSITA (extended ROentgen Survey with an Imaging Telescope Array) survey to be achieved by the early 2020s. We bring special attention to modelling the entire chain from photon emission to source detection and cataloguing. Methods. The selection function of galaxy clusters for the upcoming eROSITA mission is investigated by means of extensive and dedicated Monte-Carlo simulations. Employing a combination of accurate instrument characterisation and a state-of-the-art source detection technique, we determine a cluster detection efficiency based on the cluster fluxes and sizes. Results. Using this eROSITA cluster selection function, we find that eROSITA will detect a total of approximately 105 clusters in the extra-galactic sky. This number of clusters will allow eROSITA to put stringent constraints on cosmological models. We show that incomplete assumptions on selection effects, such as neglecting the distribution of cluster sizes, induce a bias in the derived value of cosmological parameters. Conclusions. Synthetic simulations of the eROSITA sky capture the essential characteristics impacting the next-generation galaxy cluster surveys and they highlight parameters requiring tight monitoring in order to avoid biases in cosmological analyses.
  • Item
    The MUSE Extremely Deep Field: The cosmic web in emission at high redshift
    (Les Ulis : EDP Sciences, 2021) Bacon, Roland; Mary, David; Garel, Thibault; Blaizot, Jeremy; Maseda, Michael; Schaye, Joop; Wisotzki, Lutz; Conseil, Simon; Brinchmann, Jarle; Leclercq, Floriane; Abril-Melgarejo, Valentina; Boogaard, Leindert; Bouché, Nicolas; Contini, Thierry; Feltre, Anna; Guiderdoni, Bruno; Herenz, Christian; Kollatschny, Wolfram; Kusakabe, Haruka; Matthee, Jorryt; Michel-Dansac, Léo; Nanayakkara, Themiya; Richard, Johan; Roth, Martin; Schmidt, Kasper B.; Steinmetz, Matthias; Tresse, Laurence; Urrutia, Tanya; Verhamme, Anne; Weilbacher, Peter M.; Zabl, Johannes; Zoutendijk, Sebastiaan L.
    We report the discovery of diffuse extended Lyα emission from redshift 3.1 to 4.5, tracing cosmic web filaments on scales of 2.5-4 cMpc. These structures have been observed in overdensities of Lyα emitters in the MUSE Extremely Deep Field, a 140 h deep MUSE observation located in the Hubble Ultra-Deep Field. Among the 22 overdense regions identified, five are likely to harbor very extended Lyα emission at high significance with an average surface brightness of 5  ×  10-20 erg s-1 cm-2 arcsec-2. Remarkably, 70% of the total Lyα luminosity from these filaments comes from beyond the circumgalactic medium of any identified Lyα emitter. Fluorescent Lyα emission powered by the cosmic UV background can only account for less than 34% of this emission at z  ≈  3 and for not more than 10% at higher redshift. We find that the bulk of this diffuse emission can be reproduced by the unresolved Lyα emission of a large population of ultra low-luminosity Lyα emitters (< 1040 erg s-1), provided that the faint end of the Lyα luminosity function is steep (α ⪅ -1.8), it extends down to luminosities lower than 1038 -  1037 erg s-1, and the clustering of these Lyα emitters is significant (filling factor < 1/6). If these Lyα emitters are powered by star formation, then this implies their luminosity function needs to extend down to star formation rates < 10-4M yr-1. These observations provide the first detection of the cosmic web in Lyα emission in typical filamentary environments and the first observational clue indicating the existence of a large population of ultra low-luminosity Lyα emitters at high redshift. © R. Bacon et al. 2021.
  • Item
    Testing gravity with galaxy-galaxy lensing and redshift-space distortions using CFHT-Stripe 82, CFHTLenS, and BOSS CMASS datasets
    (Les Ulis : EDP Sciences, 2019) Jullo, E.; de la Torre, S.; Cousinou, M.-C.; Escoffier, S.; Giocoli, C.; Metcalf, R.B.; Comparat, J.; Shan, H.-Y.; Makler, M.; Kneib, J.-P.; Prada, F.; Yepes, G.; Gottlöber, S.
    The combination of galaxy-galaxy lensing (GGL) and redshift space distortion of galaxy clustering (RSD) is a privileged technique to test general relativity predictions and break degeneracies between the growth rate of structure parameter f and the amplitude of the linear power spectrum σ8. We performed a joint GGL and RSD analysis on 250 sq. deg using shape catalogues from CFHTLenS and CFHT-Stripe 82 and spectroscopic redshifts from the BOSS CMASS sample. We adjusted a model that includes non-linear biasing, RSD, and Alcock-Paczynski effects. We used an N-body simulation supplemented by an abundance matching prescription for CMASS galaxies to build a set of overlapping lensing and clustering mocks. Together with additional spectroscopic data, this helps us to quantify and correct several systematic errors, such as photometric redshifts. We find f(z = 0.57) = 0.95 ± 0.23, σ8(z = 0.57) = 0.55 ± 0.07 and ωm = 0.31 ± 0.08, in agreement with Planck cosmological results 2018. We also estimate the probe of gravity EG = 0.43 ± 0.10, in agreement with ΛCDM-GR predictions of EG = 0.40. This analysis reveals that RSD efficiently decreases the GGL uncertainty on ωm by a factor of 4 and by 30% on σ8. We make our mock catalogues available on the Skies and Universe database.