Search Results

Now showing 1 - 2 of 2
  • Item
    Express method for isolation of ready-to-use 3D chitin scaffolds from aplysina archeri (aplysineidae: verongiida) demosponge
    (Basel : MDPI, 2019) Klinger, Christine; Zółtowska-Aksamitowska, Sonia; Wysokowski, Marcin; Tsurkan, Mikhail V.; Galli, Roberta; Petrenko, Iaroslav; Machałowski, Tomasz; Ereskovsky, Alexander; Martinović, Rajko; Muzychka, Lyubov; Smolii, Oleg B.; Bechmann, Nicole; Ivanenko, Viatcheslav; Schupp, Peter J.; Jesionowski, Teofil; Giovine, Marco; Bornstein, Stefan R.; Voronkina, Alona; Ehrlich, Hermann
    Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of A. archeri and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields. © 2019 by the authors.
  • Item
    Moniliella spathulata, an oil-degrading yeast, which promotes growth of barley in oil-polluted soil
    (Berlin ; Heidelberg ; New York : Springer, 2021) Mikolasch, Annett; Berzhanova, Ramza; Omirbekova, Anel; Reinhard, Anne; Zühlke, Daniele; Meister, Mareike; Mukasheva, Togzhan; Riedel, Katharina; Urich, Tim; Schauer, Frieder
    The yeast strain Moniliella spathulata SBUG-Y 2180 was isolated from oil-contaminated soil at the Tengiz oil field in the Atyrau region of Kazakhstan on the basis of its unique ability to use crude oil and its components as the sole carbon and energy source. This yeast used a large number of hydrocarbons as substrates (more than 150), including n-alkanes with chain lengths ranging from C10 to C32, monomethyl- and monoethyl-substituted alkanes (C9–C23), and n-alkylcyclo alkanes with alkyl chain lengths from 3 to 24 carbon atoms as well as substituted monoaromatic and diaromatic hydrocarbons. Metabolism of this huge range of hydrocarbon substrates produced a very large number of aliphatic, alicyclic, and aromatic acids. Fifty-one of these were identified by GC/MS analyses. This is the first report of the degradation and formation of such a large number of compounds by a yeast. Inoculation of barley seeds with M. spathulata SBUG-Y 2180 had a positive effect on shoot and root development of plants grown in oil-contaminated sand, pointing toward potential applications of the yeast in bioremediation of polluted soils. Key points: • Moniliella spathulata an oil-degrading yeast • Increase of the growth of barley. © 2020, The Author(s).