Search Results

Now showing 1 - 8 of 8
  • Item
    Self-Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors
    (Chichester : John Wiley and Sons Ltd, 2019) Li, F.; Wang, J.; Liu, L.; Qu, J.; Li, Y.; Bandari, V.K.; Karnaushenko, D.; Becker, C.; Faghih, M.; Kang, T.; Baunack, S.; Zhu, M.; Zhu, F.; Schmidt, O.G.
    The rapid development of microelectronics has equally rapidly increased the demand for miniaturized energy storage devices. On-chip microsupercapacitors (MSCs), as promising power candidates, possess great potential to complement or replace electrolytic capacitors and microbatteries in various applications. However, the areal capacities and energy densities of the planar MSCs are commonly limited by the low voltage window, the thin layer of the electrode materials and complex fabrication processes. Here, a new-type three-dimensional (3D) tubular asymmetric MSC with small footprint area, high potential window, ultrahigh areal energy density, and long-term cycling stability is fabricated with shapeable materials and photolithographic technologies, which are compatible with modern microelectronic fabrication procedures widely used in industry. Benefiting from the novel architecture, the 3D asymmetric MSC displays an ultrahigh areal capacitance of 88.6 mF cm−2 and areal energy density of 28.69 mW h cm−2, superior to most reported interdigitated MSCs. Furthermore, the 3D tubular MSCs demonstrate remarkable cycling stability and the capacitance retention is up to 91.8% over 12 000 cycles. It is believed that the efficient fabrication methodology can be used to construct various integratable microscale tubular energy storage devices with small footprint area and high performance for miniaturized electronics.
  • Item
    Ultrathin two-dimensional conjugated metal– organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis
    (Cambridge : RSC, 2020) Wang, Zhonghao; Wang, Gang; Qi, Haoyuan; Wang, Mao; Wang, Mingchao; Park, SangWook; Wang, Huaping; Yu, Minghao; Kaiser, Ute; Fery, Andreas; Zhou, Shengqiang; Dong, Renhao; Feng, Xinliang
    Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have recently emerged for potential applications in (opto-)electronics, chemiresistive sensing, and energy storage and conversion, due to their excellent electrical conductivity, abundant active sites, and intrinsic porous structures. However, developing ultrathin 2D c-MOF nanosheets (NSs) for facile solution processing and integration into devices remains a great challenge, mostly due to unscalable synthesis, low yield, limited lateral size and low crystallinity. Here, we report a surfactant-assisted solution synthesis toward ultrathin 2D c-MOF NSs, including HHB-Cu (HHB = hexahydroxybenzene), HHB-Ni and HHTP-Cu (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene). For the first time, we achieve single-crystalline HHB-Cu(Ni) NSs featured with a thickness of 4-5 nm (∼8-10 layers) and a lateral size of 0.25-0.65 μm2, as well as single-crystalline HHTP-Cu NSs with a thickness of ∼5.1 ± 2.6 nm (∼10 layers) and a lateral size of 0.002-0.02 μm2. Benefiting from the ultrathin feature, the synthetic NSs allow fast ion diffusion and high utilization of active sites. As a proof of concept, when serving as a cathode material for Li-ion storage, HHB-Cu NSs deliver a remarkable rate capability (charge within 3 min) and long-term cycling stability (90% capacity retention after 1000 cycles), superior to the corresponding bulk materials and other reported MOF cathodes. This journal is © The Royal Society of Chemistry.
  • Item
    Applications of Carbon Nanotubes in the Internet of Things Era
    (Berlin ; Heidelberg [u.a.] : Springer, 2021) Pang, Jinbo; Bachmatiuk, Alicja; Yang, Feng; Liu, Hong; Zhou, Weijia; Rümmeli, Mark H.; Cuniberti, Gianaurelio
    The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain-machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.
  • Item
    Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling
    (Cambridge : RSC Publ., 2016) Lee, Juhan; Krüner, Benjamin; Tolosa, Aura; Sathyamoorthi, Sethuraman; Kim, Daekyu; Choudhury, Soumyadip; Seo, Kum-Hee; Presser, Volker
    We introduce a high performance hybrid electrochemical energy storage system based on an aqueous electrolyte containing tin sulfate (SnSO4) and vanadyl sulfate (VOSO4) with nanoporous activated carbon. The energy storage mechanism of this system benefits from the unique synergy of concurrent electric double-layer formation, reversible tin redox reactions, and three-step redox reactions of vanadium. The hybrid system showed excellent electrochemical properties such as a promising energy capacity (ca. 75 W h kg−1, 30 W h L−1) and a maximum power of up to 1.5 kW kg−1 (600 W L−1, 250 W m−2), exhibiting capacitor-like galvanostatic cycling stability and a low level of self-discharging rate.
  • Item
    Effect of cation size of binary cation ionic liquid mixtures on capacitive energy storage
    (New York, NY [u.a.] : Elsevier, 2023) Seltmann, Anna; Verkholyak, Taras; Gołowicz, Dariusz; Pameté, Emmanuel; Kuzmak, Andrij; Presser, Volker; Kondrat, Svyatoslav
    Ionic liquid mixtures show promise as electrolytes for supercapacitors with nanoporous electrodes. Herein, we investigate theoretically and with experiments how binary electrolytes comprising a common anion and two types of differently-sized cations affect capacitive energy storage. We find that such electrolytes can enhance the capacitance of single nanopores and nanoporous electrodes under potential differences negative relative to the potential of zero charge. For a two-electrode cell, however, they are beneficial only at low and intermediate cell voltages, while a neat ionic liquid performs better at higher voltages. We reveal subtle effects of how the distribution of pores accessible to different types of ions correlates with charge storage and suggest approaches to increase capacitance and stored energy density with ionic liquid mixtures.
  • Item
    Nitrogen and boron doped carbon layer coated multiwall carbon nanotubes as high performance anode materials for lithium ion batteries
    ([London] : Nature Publishing Group, 2021) Liu, Bo; Sun, Xiaolei; Liao, Zhongquan; Lu, Xueyi; Zhang, Lin; Hao, Guang-Ping
    Lithium ion batteries (LIBs) are at present widely used as energy storage and conversion device in our daily life. However, due to the limited power density, the application of LIBs is still restricted in some areas such as commercial vehicles or heavy-duty trucks. An effective strategy to solve this problem is to increase energy density through the development of battery materials. At the same time, a stable long cycling battery is a great demand of environmental protection and industry. Herein we present our new materials, nitrogen and boron doped carbon layer coated multiwall carbon nanotubes (NBC@MWCNTs), which can be used as anodes for LIBs. The electrochemical results demonstrate that the designed NBC@MWCNTs electrode possesses high stable capacity over an ultra-long cycling lifespan (5000 cycles) and superior rate capability even at very high current density (67.5 A g−1). Such impressive lithium storage properties could be ascribed to the synergistic coupling effect of the distinctive structural features, the reduced diffusion length of lithium ions, more active sites generated by doped atoms for lithium storage, as well as the enhancement of the electrode structural integrity. Taken together, these results indicate that the N, B-doped carbon@MWCNTs materials may have great potential for applications in next-generation high performance rechargeable batteries.
  • Item
    Shapeable magnetoelectronics
    (Melville, NY : American Inst. of Physics, 2016) Makarov, Denys; Melzer, Michael; Karnaushenko, Daniil; Schmidt, Oliver G.
    Inorganic nanomembranes are shapeable (flexible, printable, and even stretchable) and transferrable to virtually any substrate. These properties build the core concept for new technologies, which transform otherwise rigid high-speed devices into their shapeable counterparts. This research is motivated by the eagerness of consumer electronics towards being thin, lightweight, flexible, and even wearable. The realization of this concept requires all building blocks as we know them from rigid electronics (e.g., active elements, optoelectronics, magnetoelectronics, and energy storage) to be replicated in the form of (multi)functional nanomembranes, which can be reshaped on demand after fabrication. There are already a variety of shapeable devices commercially available, i.e., electronic displays, energy storage elements, and integrated circuitry, to name a few. From the beginning, the main focus was on the fabrication of shapeable high-speed electronics and optoelectronics. Only very recently, a new member featuring magnetic functionalities was added to the family of shapeable electronics. With their unique mechanical properties, the shapeable magnetic field sensor elements readily conform to ubiquitous objects of arbitrary shapes including the human skin. This feature leads electronic skin systems beyond imitating the characteristics of its natural archetype and extends their cognition to static and dynamic magnetic fields that by no means can be perceived by human beings naturally. Various application fields of shapeable magnetoelectronics are proposed. The developed sensor platform can equip soft electronic systems with navigation, orientation, motion tracking, and touchless control capabilities. A variety of novel technologies, such as smart textiles, soft robotics and actuators, active medical implants, and soft consumer electronics, will benefit from these new magnetic functionalities. This review reflects the establishment of shapeable magnetic sensorics, describing the entire development from the first attempts to verify the functional concept to the realization of ready-to-use highly compliant and strain invariant sensor devices with remarkable robustness.
  • Item
    Mixed-halide triphenyl methyl radicals for site-selective functionalization and polymerization
    (London : RSC Publishing, 2021) Chen, Lisa; Arnold, Mona; Blinder, Rémi; Jelezko, Fedor; Kuehne, Alexander J. C.
    Derivatives of the stable, luminescent tris-2,4,6-trichlorophenylmethyl (TTM) radical exhibit unique doublet spin properties that are of interest for applications in optoelectronics, spintronics, and energy storage. However, poor reactivity of the chloride-moieties limits the yield of functionalization and thus the accessible variety of high performance luminescent radicals. Here, we present a pathway to obtain mixed-bromide and chloride derivatives of TTM by simple Friedel–Crafts alkylation. The resulting radical compounds show higher stability and site-specific reactivity in cross-coupling reactions, due to the better leaving group character of the para-bromide. The mixed halide radicals give access to complex, and so far inaccessible luminescent open-shell small molecules, as well as polymers carrying the radical centers in their backbone. The new mixed-halide triphenyl methyl radicals represent a powerful building block for customized design and synthesis of stable luminescent radicals.