Search Results

Now showing 1 - 2 of 2
  • Item
    Bioinspired Polydopamine Coating as an Adhesion Enhancer Between Paraffin Microcapsules and an Epoxy Matrix
    (Washington, DC : ACS Publications, 2020) Fredi, Giulia; Simon, Frank; Sychev, Dmitrii; Melnyk, Inga; Janke, Andreas; Scheffler, Christina; Zimmerer, Cordelia
    Microencapsulated phase change materials (PCMs) are attracting increasing attention as functional fillers in polymer matrices, to produce smart thermoregulating composites for applications in thermal energy storage (TES) and thermal management. In a polymer composite, the filler–matrix interfacial adhesion plays a fundamental role in the thermomechanical properties. Hence, this work aims to modify the surface of commercial PCM microcapsules through the formation of a layer of polydopamine (PDA), a bioinspired polymer that is emerging as a powerful tool to functionalize chemically inert surfaces due to its versatility and great adhesive potential in many different materials. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) evidenced that after PDA coating, the surface roughness increased from 9 to 86 nm, which is beneficial, as it allows a further increase in the interfacial interaction by mechanical interlocking. Spectroscopic techniques allowed investigating the surface chemistry and identifying reactive functional groups of the PDA layer and highlighted that, unlike the uncoated microcapsules, the PDA layer is able to react with oxirane groups, thereby forming a covalent bond with the epoxy matrix. Hot-stage optical microscopy and differential scanning calorimetry (DSC) highlighted that the PDA modification does not hinder the melting/crystallization process of the paraffinic core. Finally, SEM micrographs of the cryofracture surface of epoxy composites containing neat or PDA-modified microcapsules clearly evidenced improved adhesion between the capsule shell and the epoxy matrix. These results showed that PDA is a suitable coating material with considerable potential for increasing the interfacial adhesion between an epoxy matrix and polymer microcapsules with low surface reactivity. This is remarkably important not only for this specific application but also for other classes of composite materials. Future studies will investigate how the deposition parameters affect the morphology, roughness, and thickness of the PDA layer and how the layer properties influence the capsule–matrix adhesion.
  • Item
    Enhanced laccase-mediated transformation of diclofenac and flufenamic acid in the presence of bisphenol A and testing of an enzymatic membrane reactor
    (Heidelberg : Springer, 2018-02-24) Hahn, Veronika; Meister, Mareike; Hussy, Stephan; Cordes, Arno; Enderle, Günther; Saningong, Akuma; Schauer, Frieder
    The inadequate removal of pharmaceuticals and other micropollutants in municipal wastewater treatment plants, as evidenced by their detection of these substances in the aquatic environment has led to the need for sustainable remediation strategies. Laccases possess a number of advantages including a broad substrate spectrum. To identify promoting or inhibitory effects of reaction partners in the remediation processes we tested not only single compounds-as has been described in most studies-but also mixtures of pollutants. The reaction of diclofenac (DCF) and flufenamic acid (FA), mediated by Trametes versicolor laccase resulted in the formation of products, which were more hydrophilic than the respective reactant (reactant concentration of 0.1 mM; laccase activity 0.5 U/ml). Analyses (HPLC, LC/MS) showed that the product 1a and 1b for DCF and FA, respectively, to be a para-benzoquinone imine derivative. The formation of 1a was enhanced by the addition of bisphenol A (BPA). After 6 days 97% more product was formed in the mixture of DCF and BPA compared with DCF tested alone. Product 1a was also detected in experiments with micropollutant-supplemented secondary effluent. Within 24 h 67% and 100% of DCF and BPA were transformed, respectively (25 U/ml). Experiments with a membrane reactor (volume 10 l; phosphate buffer, pH 7) were in good agreement with the results of the laboratory scale experiments (50 ml). EC50-values were also determined. The data support the use of laccases for the removal or detoxification of recalcitrant pollutants. Thus, the enzyme laccase may be a component of an additional environmentally friendly process for the treatment stage of wastewater remediation.