Search Results

Now showing 1 - 2 of 2
  • Item
    Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance
    (Cambridge : RSC Publ., 2020) Pan, Yu; Yao, Mengyu; Hong, Xiaochen; Zhu, Yifan; Fan, Fengren; Imasato, Kazuki; He, Yangkun; Hess, Christian; Fink, Jörg; Yang, Jiong; Büchner, Bernd; Fu, Chenguang; Snyder, G. Jeffrey; Felser, Claudia
    The rapid growth of the thermoelectric cooler market makes the development of novel room temperature thermoelectric materials of great importance. Ternary n-type Mg3(Bi,Sb)2 alloys are promising alternatives to the state-of-the-art Bi2(Te,Se)3 alloys but grain boundary resistance is the most important limitation. n-type Mg3(Bi,Sb)2 single crystals with negligible grain boundaries are expected to have particularly high zT but have rarely been realized due to the demanding Mg-rich growth conditions required. Here, we report, for the first time, the thermoelectric properties of n-type Mg3(Bi,Sb)2 alloyed single crystals grown by a one-step Mg-flux method using sealed tantalum tubes. High weighted mobility ∼140 cm2 V−1 s−1 and a high zT of 0.82 at 315 K are achieved in Y-doped Mg3Bi1.25Sb0.75 single crystals. Through both experimental angle-resolved photoemission spectroscopy and theoretical calculations, we denote the origin of the high thermoelectric performance from a point of view of band widening effect and electronegativity, as well as the necessity to form high Bi/Sb ratio ternary Mg3(Bi,Sb)2 alloys. The present work paves the way for further development of Mg3(Bi,Sb)2 for near room temperature thermoelectric applications.
  • Item
    New electronic device for driving surface acoustic wave actuators
    (Amsterdam : Elsevier, 2009) Brünig, R.; Mensel, K.; Kunze, R.; Schmidt, H.
    Surface acoustic wave (SAW) actuators are driven by a high frequency signal. The frequency range for an ideal SAW-generation is usually very narrow banded and may shift depending on various environmental conditions. We present a new electronic device which self-aligns to the optimal excitation frequency within a wide range. Any kind of SAW-actuator can be used. The device continuously scans a certain frequency range and characterizes the SAW-component. The ideal excitation frequency is then determined and used to drive the SAW-device. In case of changes like loading conditions or temperature variations the device automatically readjusts to the optimal frequency and prevents possible damage of the device or actuator in case of an error. © 2009.