Search Results

Now showing 1 - 3 of 3
  • Item
    Impact of rare earth doping on the luminescence of lanthanum aluminum silicate glasses for radiation sensing
    (Washington, DC : OSA, 2022) Shaw, Ruth E.; Kalnins, Christopher A. G.; Whittaker, Carly A.; Moffatt, Jillian E.; Tsiminis, Georgios; Klantsataya, Elizaveta; Ottaway, David; Spooner, Nigel A.; Litzkendorf, Doris; Matthes, Anne; Schwuchow, Anka; Wondraczek, Katrin; Ebendorff-Heidepriem, Heike
    Large core soft glass fibers have been demonstrated to be promising candidates as intrinsic fiber sensors for radiation detection and dosimetry applications. Doping with rare earth ions enhanced their radiation sensitivity. SiO2-Al2O3-La2O3 (SAL) glasses offer easy fabrication of large core fibers with high rare earth concentration and higher mechanical strength than soft glasses. This paper evaluates the suitability of the SAL glass type for radiation dosimetry based on optically stimulated luminescence (OSL) via a comprehensive investigation of the spectroscopic and dosimetric properties of undoped and differently rare earth doped bulk SAL glass samples. Due to the low intensity of the rare earth luminescence peaks in the 250–400 nm OSL detection range, the OSL response for all the SAL glasses is not caused by the rare earth ions but by radiation-induced defects that act as intrinsic centers for the recombination of electrons and holes produced by the ionizing radiation, trapped in fabrication induced defect centers, and then released via stimulation with 470 nm light. The rare earth ions interfere with these processes involving intrinsic centers. This dosimetric behavior of highly rare earth doped SAL glasses suggests that enhancement of OSL response requires lower rare earth concentrations and/or longer wavelength OSL detection range.
  • Item
    Two-Dimensional Partial-Covariance Mass Spectrometry of Large Molecules Based on Fragment Correlations
    (College Park, Md. : APS, 2020) Driver, Taran; Cooper, Bridgette; Ayers, Ruth; Pipkorn, Rüdiger; Patchkovskii, Serguei; Averbukh, Vitali; Klug, David R.; Marangos, Jon P.; Frasinski, Leszek J.; Edelson-Averbukh, Marina
    Covariance mapping [L. J. Frasinski, K. Codling, and P. A. Hatherly, Science 246, 1029 (1989)] is a well-established technique used for the study of mechanisms of laser-induced molecular ionization and decomposition. It measures statistical correlations between fluctuating signals of pairs of detected species (ions, fragments, electrons). A positive correlation identifies pairs of products originating from the same dissociation or ionization event. A major challenge for covariance-mapping spectroscopy is accessing decompositions of large polyatomic molecules, where true physical correlations are overwhelmed by spurious signals of no physical significance induced by fluctuations in experimental parameters. As a result, successful applications of covariance mapping have so far been restricted to low-mass systems, e.g., organic molecules of around 50 daltons (Da). Partial-covariance mapping was suggested to tackle the problem of spurious correlations by taking into account the independently measured fluctuations in the experimental conditions. However, its potential has never been realized for the decomposition of large molecules, because in these complex situations, determining and continuously monitoring multiple experimental parameters affecting all the measured signals simultaneously becomes unfeasible. We introduce, through deriving theoretically and confirming experimentally, a conceptually new type of partial-covariance mapping—self-correcting partial-covariance spectroscopy—based on a parameter extracted from the measured spectrum itself. We use the readily available total ion count as the self-correcting partial-covariance parameter, thus eliminating the challenge of determining experimental parameter fluctuations in covariance measurements of large complex systems. The introduced self-correcting partial covariance enables us to successfully resolve correlations of molecules as large as 103–104  Da, 2 orders of magnitude above the state of the art. This opens new opportunities for mechanistic studies of large molecule decompositions through revealing their fragment-fragment correlations. Moreover, we demonstrate that self-correcting partial covariance is applicable to solving the inverse problem: reconstruction of a molecular structure from its fragment spectrum, within two-dimensional partial-covariance mass spectrometry.
  • Item
    Experimental system design for the integration of trapped-ion and superconducting qubit systems
    (Dordrecht : Springer Science + Business Media B.V., 2016) De Motte, D.; Grounds, A.R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G.S.; Neilinger, P.; Oelsner, G.; Il’ichev, E.; Grajcar, M.; Hensinger, W.K.
    We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi:10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.