Search Results

Now showing 1 - 10 of 15
Loading...
Thumbnail Image
Item

Characterizing the sectoral development of cities

2021, Rybski, Diego, Pradhan, Prajal, Shutters, Shade T., Butsic, Van, Kropp, Jürgen P., Xue, Bing

Previous research has identified a predictive model of how a nation’s distribution of gross domestic product (GDP) among agriculture (a), industry (i), and services (s) changes as a country develops. Here we use this national model to analyze the composition of GDP for US Metropolitan Statistical Areas (MSA) over time. To characterize the transfer of GDP shares between the sectors in the course of economic development we explore a simple system of differential equations proposed in the country-level model. Fitting the model to more than 120 MSAs we find that according to the obtained parameters MSAs can be classified into 6 groups (consecutive, high industry, re-industrializing; each of them also with reversed development direction). The consecutive transfer (a → i → s) is common but does not represent all MSAs examined. At the 95% confidence level, 40% of MSAs belong to types exhibiting an increasing share of GDP from agriculture. In California, such MSAs, which we classify as part of an agriculture renaissance, are found in the Central Valley.

Loading...
Thumbnail Image
Item

Embodied Greenhouse Gas Emissions in Diets

2013, Pradhan, P., Reusser, D.E., Kropp, J.P.

Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to <3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7-6.1 kg CO2eq./day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO2eq./yr by 2050.

Loading...
Thumbnail Image
Item

Greenhouse gas emissions from food systems: building the evidence base

2021-6-8, Tubiello, Francesco N, Rosenzweig, Cynthia, Conchedda, Giulia, Karl, Kevin, Gütschow, Johannes, Xueyao, Pan, Obli-Laryea, Griffiths, Wanner, Nathan, Qiu, Sally Yue, De Barros, Julio, Flammini, Alessandro, Mencos-Contreras, Erik, Souza, Leonardo, Quadrelli, Roberta, Heiðarsdóttir, Hörn Halldórudóttir, Benoit, Philippe, Hayek, Matthew, Sandalow, David

New estimates of greenhouse gas (GHG) emissions from the food system were developed at the country level, for the period 1990–2018, integrating data from crop and livestock production, on-farm energy use, land use and land use change, domestic food transport and food waste disposal. With these new country-level components in place, and by adding global and regional estimates of energy use in food supply chains, we estimate that total GHG emissions from the food system were about 16 CO2eq yr−1 in 2018, or one-third of the global anthropogenic total. Three quarters of these emissions, 13 Gt CO2eq yr−1, were generated either within the farm gate or in pre- and post-production activities, such as manufacturing, transport, processing, and waste disposal. The remainder was generated through land use change at the conversion boundaries of natural ecosystems to agricultural land. Results further indicate that pre- and post-production emissions were proportionally more important in developed than in developing countries, and that during 1990–2018, land use change emissions decreased while pre- and post-production emissions increased. We also report results on a per capita basis, showing world total food systems per capita emissions decreasing during 1990–2018 from 2.9 to 2.2 t CO2eq cap−1, with per capita emissions in developed countries about twice those in developing countries in 2018. Our findings also highlight that conventional IPCC categories, used by countries to report emissions in the National GHG inventory, systematically underestimate the contribution of the food system to total anthropogenic emissions. We provide a comparative mapping of food system categories and activities in order to better quantify food-related emissions in national reporting and identify mitigation opportunities across the entire food system.

Loading...
Thumbnail Image
Item

Comparing impacts of climate change and mitigation on global agriculture by 2050

2018, van Meijl, Hans, Havlik, Petr, Lotze-Campen, Hermann, Stehfest, Elke, Witzke, Peter, Pérez Domínguez, Ignacio, Bodirsky, Benjamin Leon, van Dijk, Michiel, Doelman, Jonathan, Fellmann, Thomas, Humpenöder, Florian, Koopman, Jason F. L., Müller, Christoph, Popp, Alexander, Tabeau, Andrzej, Valin, Hugo, van Zeist, Willem-Jan

Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.

Loading...
Thumbnail Image
Item

State-of-the-art global models underestimate impacts from climate extremes

2019, Schewe, Jacob, Gosling, Simon N., Reyer, Christopher, Zhao, Fang, Ciais, Philippe, Elliott, Joshua, Francois, Louis, Huber, Veronika, Lotze, Heike K., Seneviratne, Sonia I., van Vliet, Michelle T. H., Vautard, Robert, Wada, Yoshihide, Breuer, Lutz, Büchner, Matthias, Carozza, David A., Chang, Jinfeng, Coll, Marta, Deryng, Delphine, de Wit, Allard, Eddy, Tyler D., Folberth, Christian, Frieler, Katja, Friend, Andrew D., Gerten, Dieter, Gudmundsson, Lukas, Hanasaki, Naota, Ito, Akihiko, Khabarov, Nikolay, Kim, Hyungjun, Lawrence, Peter, Morfopoulos, Catherine, Müller, Christoph, Müller Schmied, Hannes, Orth, René, Ostberg, Sebastian, Pokhrel, Yadu, Pugh, Thomas A. M., Sakurai, Gen, Satoh, Yusuke, Schmid, Erwin, Stacke, Tobias, Steenbeek, Jeroen, Steinkamp, Jörg, Tang, Qiuhong, Tian, Hanqin, Tittensor, Derek P., Volkholz, Jan, Wang, Xuhui, Warszawski, Lila

Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.

Loading...
Thumbnail Image
Item

Taking stock of national climate policies to evaluate implementation of the Paris Agreement

2020, Roelfsema, Mark, van Soest, Heleen L., Harmsen, Mathijs, van Vuuren, Detlef P., Bertram, Christoph, den Elzen, Michel, Höhne, Niklas, Iacobuta, Gabriela, Krey, Volker, Kriegler, Elmar, Luderer, Gunnar, Riahi, Keywan, Ueckerdt, Falko, Després, Jacques, Drouet, Laurent, Emmerling, Johannes, Frank, Stefan, Fricko, Oliver, Gidden, Matthew, Humpenöder, Florian, Huppmann, Daniel, Fujimori, Shinichiro, Fragkiadakis, Kostas, Gi, Keii, Keramidas, Kimon, Köberle, Alexandre C., Aleluia Reis, Lara, Rochedo, Pedro, Schaeffer, Roberto, Oshiro, Ken, Vrontisi, Zoi, Chen, Wenying, Iyer, Gokul C., Edmonds, Jae, Kannavou, Maria, Jiang, Kejun, Mathur, Ritu, Safonov, George, Vishwanathan, Saritha Sudharmma

Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.

Loading...
Thumbnail Image
Item

Assessing human and environmental pressures of global land-use change 2000-2010

2019, Creutzig, Felix, Bren d'Amour, Christopher, Weddige, Ulf, Fuss, Sabine, Beringer, Tim, Gläser, Anne, Kalkuhl, Matthias, Steckel, Jan Christoph, Radebach, Alexander, Edenhofer, Ottmar

Global land is turning into an increasingly scarce resource. We here present a comprehensive assessment of co-occuring land-use change from 2000 until 2010, compiling existing spatially explicit data sources for different land uses, and building on a rich literature addressing specific land-use changes in all world regions. This review systematically categorizes patterns of land use, including regional urbanization and agricultural expansion but also globally telecoupled land-use change for all world regions. Managing land-use change patterns across the globe requires global governance. Here we present a comprehensive assessment of the extent and density of multiple drivers and impacts of land-use change. We combine and reanalyze spatially explicit data of global land-use change between 2000 and 2010 for population, livestock, cropland, terrestrial carbon and biodiversity. We find pervasive pressure on biodiversity but varying patterns of gross land-use changes across world regions. Our findings enable a classification of land-use patterns into three types. The 'consumers' type, displayed in Europe and North America, features high land footprints, reduced direct human pressures due to intensification of agriculture, and increased reliance on imports, enabling a partial recovery of terrestrial carbon and reducing pressure on biodiversity. In the 'producer' type, most clearly epitomized by Latin America, telecoupled land-use links drive biodiversity and carbon loss. In the 'mover' type, we find strong direct domestic pressures, but with a wide variety of outcomes, ranging from a concurrent expansion of population, livestock and croplands in Sub-Saharan Africa at the cost of natural habitats to strong pressure on cropland by urbanization in Eastern Asia. In addition, anthropogenic climate change has already left a distinct footprint on global land-use change. Our data- and literature-based assessment reveals region-specific opportunities for managing global land-use change. © 2019 The Author(s).

Loading...
Thumbnail Image
Item

Climate change and its effect on agriculture, water resources and human health sectors in Poland

2010, Szwed, M., Karg, G., Pińskwar, I., Radziejewski, M., Graczyk, D., Kȩdziora, A., Kundzewicz, Z.W.

Multi-model ensemble climate projections in the ENSEMBLES Project of the EU allowed the authors to quantify selected extreme-weather indices for Poland, of importance to climate impacts on systems and sectors. Among indices were: number of days in a year with high value of the heat index; with high maximum and minimum temperatures; length of vegetation period; and number of consecutive dry days. Agricultural, hydrological, and human health indices were applied to evaluate the changing risk of weather extremes in Poland in three sectors. To achieve this, model-based simulations were compared for two time horizons, a century apart, i.e., 1961-1990 and 2061-2090. Climate changes, and in particular increases in temperature and changes in rainfall, have strong impacts on agriculture via weather extremes-droughts and heat waves. The crop yield depends particularly on water availability in the plant development phase. To estimate the changes in present and future yield of two crops important for Polish agriculture i.e., potatoes and wheat, some simple empirical models were used. For these crops, decrease of yield is projected for most of the country, with national means of yield change being:-2.175 t/ha for potatoes and-0.539 t/ha for wheat. Already now, in most of Poland, evapotranspiration exceeds precipitation during summer, hence the water storage (in surface water bodies, soil and ground) decreases. Summer precipitation deficit is projected to increase considerably in the future. The additional water supplies (above precipitation) needed to use the agro-potential of the environment would increase by half. Analysis of water balance components (now and in the projected future) can corroborate such conclusions. As regards climate and health, a composite index, proposed in this paper, is a product of the number of senior discomfort days and the number of seniors (aged 65+). The value of this index is projected to increase over 8-fold during 100 years. This is an effect of both increase in the number of seniors (over twofold) and the number of senior-discomfort days (nearly fourfold).

Loading...
Thumbnail Image
Item

Implications of climate mitigation for future agricultural production

2015, Müller, Christoph, Elliott, Joshua, Chryssanthacopoulos, James, Deryng, Delphine, Folberth, Christian, Pugh, Thomas A.M., Schmid, Erwin

Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ~81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries.

Loading...
Thumbnail Image
Item

Integrate health into decision-making to foster climate action

2021-4-8, Vandyck, Toon, Rauner, Sebastian, Sampedro, Jon, Lanzi, Elisa, Reis, Lara Aleluia, Springmann, Marco, Dingenen, Rita Van

The COVID-19 pandemic reveals that societies place a high value on healthy lives. Leveraging this momentum to establish a more central role for human health in the policy process will provide further impetus to a sustainable transformation of energy and food systems.