Search Results

Now showing 1 - 3 of 3
  • Item
    One year of Raman lidar observations of free-tropospheric aerosol layers over South Africa
    (München : European Geopyhsical Union, 2015) Giannakaki, E.; Pfüller, A.; Korhonen, K.; Mielonen, T.; Laakso, L.; Vakkari, V.; Baars, H.; Engelmann, R.; Beukes, J.P.; Van Zyl, P.G.; Josipovic, M.; Tiitta, P.; Chiloane, K.; Piketh, S.; Lihavainen, H.; Lehtinen, K.E.J.; Komppula, M.
    Raman lidar data obtained over a 1 year period has been analysed in relation to aerosol layers in the free troposphere over the Highveld in South Africa. In total, 375 layers were observed above the boundary layer during the period 30 January 2010 to 31 January 2011. The seasonal behaviour of aerosol layer geometrical characteristics, as well as intensive and extensive optical properties were studied. The highest centre heights of free-tropospheric layers were observed during the South African spring (2520 ± 970 m a.g.l., also elsewhere). The geometrical layer depth was found to be maximum during spring, while it did not show any significant difference for the rest of the seasons. The variability of the analysed intensive and extensive optical properties was high during all seasons. Layers were observed at a mean centre height of 2100 ± 1000 m with an average lidar ratio of 67 ± 25 sr (mean value with 1 standard deviation) at 355 nm and a mean extinction-related Ångström exponent of 1.9 ± 0.8 between 355 and 532 nm during the period under study. Except for the intensive biomass burning period from August to October, the lidar ratios and Ångström exponents are within the range of previous observations for urban/industrial aerosols. During Southern Hemispheric spring, the biomass burning activity is clearly reflected in the optical properties of the observed free-tropospheric layers. Specifically, lidar ratios at 355 nm were 89 ± 21, 57 ± 20, 59 ± 22 and 65 ± 23 sr during spring (September–November), summer (December–February), autumn (March–May) and winter (June–August), respectively. The extinction-related Ångström exponents between 355 and 532 nm measured during spring, summer, autumn and winter were 1.8 ± 0.6, 2.4 ± 0.9, 1.8 ± 0.9 and 1.8 ± 0.6, respectively. The mean columnar aerosol optical depth (AOD) obtained from lidar measurements was found to be 0.46 ± 0.35 at 355 nm and 0.25 ± 0.2 at 532 nm. The contribution of free-tropospheric aerosols on the AOD had a wide range of values with a mean contribution of 46%.
  • Item
    Long-term in situ observations of biomass burning aerosol at a high altitude station in Venezuela – Sources, impacts and interannual variability
    (München : European Geopyhsical Union, 2013) Hamburger, T.; Matisāns, M.; Tunved, P.; Ström, J.; Calderon, S.; Hoffmann, P.; Hochschild, G.; Gross, J.; Schmeissner, T.; Wiedensohler, A.; Krejci, R.
    First long-term observations of South American biomass burning aerosol within the tropical lower free troposphere are presented. The observations were conducted between 2007 and 2009 at a high altitude station (4765 m a.s.l.) on the Pico Espejo, Venezuela. Sub-micron particle volume, number concentrations of primary particles and particle absorption were observed. Orographic lifting and shallow convection leads to a distinct diurnal cycle at the station. It enables measurements within the lower free troposphere during night-time and observations of boundary layer air masses during daytime and at their transitional regions. The seasonal cycle is defined by a wet rainy season and a dry biomass burning season. The particle load of biomass burning aerosol is dominated by fires in the Venezuelan savannah. Increases of aerosol concentrations could not be linked to long-range transport of biomass burning plumes from the Amazon basin or Africa due to effective wet scavenging of particles. Highest particle concentrations were observed within boundary layer air masses during the dry season. Ambient sub-micron particle volume reached 1.4±1.3 μm3 cm−3, refractory particle number concentrations (at 300 °C) 510±420 cm−3 and the absorption coefficient 0.91±1.2 Mm−1. The respective concentrations were lowest within the lower free troposphere during the wet season and averaged at 0.19±0.25 μm3 cm−3, 150±94 cm−3 and 0.15±0.26 Mm−1. A decrease of particle concentrations during the dry seasons from 2007–2009 could be connected to a decrease in fire activity in the wider region of Venezuela using MODIS satellite observations. The variability of biomass burning is most likely linked to the El Niño–Southern Oscillation (ENSO). Low biomass burning activity in the Venezuelan savannah was observed to follow La Niña conditions, high biomass burning activity followed El Niño conditions.
  • Item
    Vertical aerosol distribution in the southern hemispheric midlatitudes as observed with lidar in Punta Arenas, Chile (53.2° and 70.9° W), during ALPACA
    (Katlenburg-Lindau : EGU, 2019) Foth, Andreas; Kanitz, Thomas; Engelmann, Ronny; Baars, Holger; Radenz, Martin; Seifert, Patric; Barja, Boris; Fromm, Michael; Kalesse, Heike; Ansmann, Albert
    Within this publication, lidar observations of the vertical aerosol distribution above Punta Arenas, Chile (53.2 S and 70.9 W), which have been performed with the Raman lidar PollyXT from December 2009 to April 2010, are presented. Pristine marine aerosol conditions related to the prevailing westerly circulation dominated the measurements. Lofted aerosol layers could only be observed eight times during the whole measurement period. Two case studies are presented showing long-range transport of smoke from biomass burning in Australia and regionally transported dust from the Patagonian Desert, respectively. The aerosol sources are identified by trajectory analyses with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and FLEXible PARTicle dispersion model (FLEXPART). However, seven of the eight analysed cases with lofted layers show an aerosol optical thickness of less than 0.05. From the lidar observations, a mean planetary boundary layer (PBL) top height of 1150 350m was determined. An analysis of particle backscatter coefficients confirms that the majority of the aerosol is attributed to the PBL, while the free troposphere is characterized by a very low background aerosol concentration. The ground-based lidar observations at 532 and 1064 nm are supplemented by the Aerosol Robotic Network (AERONET) Sun photometers and the space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The averaged aerosol optical thickness (AOT) determined by CALIOP was 0:02 0:01 in Punta Arenas from 2009 to 2010. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.