Search Results

Now showing 1 - 2 of 2
  • Item
    Self-propelled micromotors for cleaning polluted water
    (Washington, DC : ACS, 2013) Soler, L.; Magdanz, V.; Fomin, V.M.; Sanchez, S.; Schmidt, O.G.
    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction-diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water.
  • Item
    Switching Propulsion Mechanisms of Tubular Catalytic Micromotors
    (Weinheim : Wiley-VCH, 2021) Wrede, Paul; Medina-Sánchez, Mariana; Fomin, Vladimir M.; Schmidt, Oliver G.
    Different propulsion mechanisms have been suggested for describing the motion of a variety of chemical micromotors, which have attracted great attention in the last decades due to their high efficiency and thrust force, enabling several applications in the fields of environmental remediation and biomedicine. Bubble-recoil based motion, in particular, has been modeled by three different phenomena: capillary forces, bubble growth, and bubble expulsion. However, these models have been suggested independently based on a single influencing factor (i.e., viscosity), limiting the understanding of the overall micromotor performance. Therefore, the combined effect of medium viscosity, surface tension, and fuel concentration is analyzed on the micromotor swimming ability, and the dominant propulsion mechanisms that describe its motion more accurately are identified. Using statistically relevant experimental data, a holistic theoretical model is proposed for bubble-propelled tubular catalytic micromotors that includes all three above-mentioned phenomena and provides deeper insights into their propulsion physics toward optimized geometries and experimental conditions.