Search Results

Now showing 1 - 3 of 3
  • Item
    Graphene oxide functional nanohybrids with magnetic nanoparticles for improved vectorization of doxorubicin to neuroblastoma cells
    (Basel : MDPI AG, 2019) Lerra, L.; Farfalla, A.; Sanz, B.; Cirillo, G.; Vittorio, O.; Voli, F.; Grand, M.L.; Curcio, M.; Nicoletta, F.P.; Dubrovska, A.; Hampel, S.; Iemma, F.; Goya, G.F.
    With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.
  • Item
    Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension
    (Columbus, Ohio : American Chemical Society, 2019) Licht, Christopher; Rose, Jonas C.; Anarkoli, Abdolrahman Omidinia; Blondel, Delphine; Roccio, Marta; Haraszti, Tamás; Gehlen, David B.; Hubbell, Jeffrey A.; Lutolf, Matthias P.; De Laporte, Laura
    An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.
  • Item
    Braid equivalences and the L-moves
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach, 2011) Lambropoulou, Sofia
    In this survey paper we present the L–moves between braids and how they can adapt and serve for establishing and proving braid equivalence theorems for various diagrammatic settings, such as for classical knots, for knots in knot complements, in c.c.o. 3–manifolds and in handlebodies, as well as for virtual knots, for flat virtuals, for welded knots and for singular knots. The L–moves are local and they provide a uniform ground for formulating and proving braid equivalence theorems for any diagrammatic setting where the notion of braid and diagrammatic isotopy is defined, the statements being first geometric and then algebraic.