Search Results

Now showing 1 - 5 of 5
  • Item
    Identifying environmental controls on vegetation greenness phenology through model-data integration
    (München : European Geopyhsical Union, 2014) Forkel, M.; Carvalhais, N.; Schaphoff, S.; v. Bloh, W.; Migliavacca, M.; Thurner, M.; Thonicke, K.
    Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer-term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data sets can potentially help to revise current modelling approaches and thus enhance the understanding of processes that control seasonal to long-term vegetation greenness dynamics. Here we implemented a new phenology model within the LPJmL (Lund Potsdam Jena managed lands) DGVM and integrated several observational data sets to improve the ability of the model in reproducing satellite-derived time series of vegetation greenness. Specifically, we optimized LPJmL parameters against observational time series of the fraction of absorbed photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the main environmental controls for seasonal vegetation greenness dynamics. We demonstrated that LPJmL with new phenology and optimized parameters better reproduces seasonality, inter-annual variability and trends of vegetation greenness. Our results indicate that soil water availability is an important control on vegetation phenology not only in water-limited biomes but also in boreal forests and the Arctic tundra. Whereas water availability controls phenology in water-limited ecosystems during the entire growing season, water availability co-modulates jointly with temperature the beginning of the growing season in boreal and Arctic regions. Additionally, water availability contributes to better explain decadal greening trends in the Sahel and browning trends in boreal forests. These results emphasize the importance of considering water availability in a new generation of phenology modules in DGVMs in order to correctly reproduce observed seasonal-to-decadal dynamics of vegetation greenness.
  • Item
    Longitude-dependent decadal ozone changes and ozone trends in boreal winter months during 1960-2000
    (Göttingen : Copernicus, 2008) Peters, D.H.W.; Gabriel, A.; Entzian, G.
    This study examines the longitude-dependent decadal changes and trends of ozone for the boreal winter months during the period of 1960–2000. These changes are caused primarily by changes in the planetary wave structure in the upper troposphere and lower stratosphere. The decadal changes and trends over 4 decades of geopotential perturbations, defined as a deviation from the zonal mean, are estimated by linear regression with time. The decadal changes in longitude-dependent ozone were calculated with a simple transport model of ozone based on the known planetary wave structure changes and prescribed zonal mean ozone gradients. For December of the 1960s and 1980s a statistically significant Rossby wave track appeared over the North Atlantic and Europe with an anticyclonic disturbance over the Eastern North Atlantic and Western Europe, flanked by cyclonic disturbances. In the 1970s and 1990s statistically significant cyclonic disturbances appeared over the Eastern North Atlantic and Europe, surrounded by anticyclonic anomalies over Northern Africa, Central Asia and Greenland. Similar patterns have been found for January. The Rossby wave track over the North Atlantic and Europe is stronger in the 1980s than in the 1960s. For February, the variability of the regression patterns is higher. For January we found a strong alteration in the modelled decadal changes in total ozone over Central and Northern Europe, showing a decrease of about 15 DU in the 1960s and 1980s and an increase of about 10 DU in the 1970s and 1990s. Over Central Europe the positive geopotential height trend (increase of 2.3 m/yr) over 40 years is of the same order (about 100 m) as the increase in the 1980s alone. This is important to recognize because it implies a total ozone decrease over Europe of the order of 14 DU for the 1960–2000 period, for January, if we use the standard change regression relation that about a 10-m geopotential height increase at 300 hPa is related to about a 1.4-DU total ozone decrease.
  • Item
    Comparing climate projections to observations up to 2011
    (Bristol : IOP Publishing, 2012) Rahmstorf, Stefan; Foster, Grant; Cazenave, Anny
    We analyse global temperature and sea-level data for the past few decades and compare them to projections published in the third and fourth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). The results show that global temperature continues to increase in good agreement with the best estimates of the IPCC, especially if we account for the effects of short-term variability due to the El Niño/Southern Oscillation, volcanic activity and solar variability. The rate of sea-level rise of the past few decades, on the other hand, is greater than projected by the IPCC models. This suggests that IPCC sea-level projections for the future may also be biased low.
  • Item
    Multidecadal trend analysis of in situ aerosol radiative properties around the world
    (Katlenburg-Lindau : EGU, 2020) Collaud Coen, Martine; Andrews, Elisabeth; Alastuey, Andrés; Petkov Arsov, Todor; Backman, John; Brem, Benjamin T.; Bukowiecki, Nicolas; Couret, Cédric; Eleftheriadis, Konstantinos; Flentje, Harald; Fiebig, Markus; Gysel-Beer, Martin; Hand, Jenny L.; Hoffer, András; Hooda, Rakesh; Hueglin, Christoph; Joubert, Warren; Keywood, Melita; Eun Kim, Jeong; Kim, Sang-Woo; Labuschagne, Casper; Lin, Neng-Huei; Lin, Yong; Lund Myhre, Cathrine; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mayol-Bracero, Olga L.; Mihalopoulos, Nikos; Pandolfi, Marco; Prats, Natalia; Prenni, Anthony J.; Putaud, Jean-Philippe; Ries, Ludwig; Reisen, Fabienne; Sellegri, Karine; Sharma, Sangeeta; Sheridan, Patrick; Sherman, James Patrick; Sun, Junying; Titos, Gloria; Torres, Elvis; Tuch, Thomas; Weller, Rolf; Wiedensohler, Alfred; Zieger, Paul; Laj, Paolo
    In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann-Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010-2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient - there is a shift to statistically significant negative trends in 2009-2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes. © 2020 Royal Society of Chemistry. All rights reserved.
  • Item
    A volcanically triggered regime shift in the subpolar North Atlantic Ocean as a possible origin of the Little Ice Age
    (München : European Geopyhsical Union, 2013) Schleussner, C.F.; Feulner, G.
    Among the climatological events of the last millennium, the Northern Hemisphere Medieval Climate Anomaly succeeded by the Little Ice Age are of exceptional importance. The origin of these regional climate anomalies remains a subject of debate and besides external influences like solar and volcanic activity, internal dynamics of the climate system might have also played a dominant role. Here, we present transient last millennium simulations of the fully coupled model of intermediate complexity Climber 3α forced with stochastically reconstructed wind-stress fields. Our results indicate that short-lived volcanic eruptions might have triggered a cascade of sea ice–ocean feedbacks in the North Atlantic, ultimately leading to a persistent regime shift in the ocean circulation. We find that an increase in the Nordic Sea sea-ice extent on decadal timescales as a consequence of major volcanic eruptions in our model leads to a spin-up of the subpolar gyre and a weakened Atlantic meridional overturning circulation, eventually causing a persistent, basin-wide cooling. These results highlight the importance of regional climate feedbacks such as a regime shift in the subpolar gyre circulation for understanding the dynamics of past and future climate.