Search Results

Now showing 1 - 10 of 11
  • Item
    Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy
    (Bristol : IOP Publ., 2017-11-6) Mueller, Niclas S.; Heeg, Sebastian; Peña Alvarez, Miriam; Kusch, Patryk; Wasserroth, Sören; Clark, Nick; Schedin, Fredrik; Parthenios, John; Papagelis, Konstantinos; Galiotis, Costas; Kalbáč, Martin; Vijayaraghavan, Aravind; Huebner, Uwe; Gorbachev, Roman; Frank, Otakar; Reich, Stephanie
    The properties of graphene depend sensitively on strain and doping affecting its behavior in devices and allowing an advanced tailoring of this material. A knowledge of the strain configuration, i.e. the relative magnitude of the components of the strain tensor, is particularly crucial, because it governs effects like band-gap opening, pseudo-magnetic fields, and induced superconductivity. It also enters critically in the analysis of the doping level. We propose a method for evaluating unknown strain configurations and simultaneous doping in graphene using Raman spectroscopy. In our analysis we first extract the bare peak shift of the G and 2D modes by eliminating their splitting due to shear strain. The shifts from hydrostatic strain and doping are separated by a correlation analysis of the 2D and G frequencies, where we find Delta omega(2D)/Delta omega(G) = 2.21 +/- 0.05 for pure hydrostatic strain. We obtain the local hydrostatic strain, shear strain and doping without any assumption on the strain configuration prior to the analysis, as we demonstrate for two model cases: Graphene under uniaxial stress and graphene suspended on nanostructures that induce strain. Raman scattering with circular corotating polarization is ideal for analyzing frequency shifts, especially for weak strain when the peak splitting by shear strain cannot be resolved.
  • Item
    Effect of electron blocking layer doping and composition on the performance of 310 nm light emitting diodes
    (Basel : MDPI, 2017) Kolbe, Tim; Knauer, Arne; Rass, Jens; Cho, Hyun Kyong; Hagedorn, Sylvia; Einfeldt, Sven; Kneissl, Michael; Weyers, Markus
    The effects of composition and p-doping profile of the AlGaN:Mg electron blocking layer (EBL) in 310 nm ultraviolet B (UV-B) light emitting diodes (LEDs) have been investigated. The carrier injection and internal quantum efficiency of the LEDs were simulated and compared to electroluminescence measurements. The light output power depends strongly on the temporal biscyclopentadienylmagnesium (Cp 2 Mg) carrier gas flow profile during growth as well as on the aluminum profile of the AlGaN:Mg EBL. The highest emission power has been found for an EBL with the highest Cp 2 Mg carrier gas flow and a gradually decreasing aluminum content in direction to the p-side of the LED. This effect is attributed to an improved carrier injection and confinement that prevents electron leakage into the p-doped region of the LED with a simultaneously enhanced carrier injection into the active region.
  • Item
    Molecular Beam Epitaxy Growth and Characterization of Germanium-Doped Cubic AlxGa1−xN
    (Weinheim : Wiley-VCH, 2020) Deppe, Michael; Henksmeier, Tobias; Gerlach, Jürgen W.; Reuter, Dirk; As, Donat J.
    In cubic (c-)GaN Ge has emerged as a promising alternative to Si for n-type doping, offering the advantage of slightly improved electrical properties. Herein, a study on Ge doping of the ternary alloy c-AlxGa1−xN is presented. Ge-doped c-AlxGa1−xN layers are grown by plasma-assisted molecular beam epitaxy. In two sample series, both the Al mole fraction x and the doping level are varied. The incorporation of Ge is verified by time-of-flight secondary ion mass spectrometry. Ge incorporation and donor concentrations rise exponentially with increasing Ge cell temperature. A maximum donor concentration of 1.4 × 1020 cm−3 is achieved. While the incorporation of Ge is almost independent of x, incorporation of O, which acts as an unintentional donor, increases for higher x. Dislocation densities start increasing when doping levels of around 3 × 1019 cm−3 are exceeded. Also photoluminescence intensities begin to drop at these high doping levels. Optical emission of layers with x > 0.25 is found to originate from a defect level 0.9 eV below the indirect bandgap, which is not related to Ge. In the investigated range 0 ≤ x ≤ 0.6, Ge is a suitable donor in c-AlxGa1−xN up to the low 1019 cm−3 range.
  • Item
    A Detailed Paleoclimate Proxy Record for the Middle Danube Basin Over the Last 430 kyr: A Rock Magnetic and Colorimetric Study of the Zemun Loess-Paleosol Sequence
    (Lausanne : Frontiers Media, 2021) Laag, Christian; Hambach, Ulrich; Zeeden, Christian; Lagroix, France; Guyodo, Yohan; Veres, Daniel; Jovanović, Mladjen; Marković, Slobodan B.
    Herein we report on fabrication and properties of organic field-effect transistors (OFETs) based on the spray-coated films of N,N′-dioctyl naphthalene diimide (NDIC8) doped with 2.4 wt% of poly (3-hexylthiophene) (P3HT). OFETs with the untreated NDIC8:P3HT films revealed electron conductivity [μe* = 5 × 10–4 cm2×(Vs)−1]. After the annealing in chloroform vapor the NDIC8:P3HT films revealed the hole transport only [μh* = 0.9 × 10–4 cm2×(Vs)−1]. Due to the chemical nature and energy levels, the hole transport was not expected for NDIC8-based system. Polarized optical- and scanning electron microscopies indicated that the solvent vapor annealing of the NDIC8:P3HT films caused a transition of their fine-grained morphology to the network of branched, dendritic crystallites. Grazing incidence wide-angle X-ray scattering studies indicated that the above transition was accompanied by a change in the crystal structure of NDIC8. The isotropic crystal structure of NDIC8 in the untreated film was identical to the known crystal structure of the bulk NDIC8. After the solvent annealing the crystal structure of NDIC8 changed to a not-yet-reported polymorph, that, unlike in the untreated film, was partially oriented with respect to the OFET substrate.
  • Item
    Modeling of edge-emitting lasers based on tensile strained germanium microstrips
    (New York, NY : IEEE, 2015) Peschka, D.; Thomas, M.; Glitzky, A.; Nürnberg, R.; Gärtner, K.; Virgilio, M.; Guha, S.; Schroeder, T.; Capellini, G.; Koprucki, Th.
    In this paper, we present a thorough modeling of an edge-emitting laser based on strained germanium (Ge) microstrips. The full-band structure of the tensile strained Ge layer enters the calculation of optical properties. Material gain for strained Ge is used in the 2D simulation of the carrier transport and of the optical field within a cross section of the microstrips orthogonal to the optical cavity. We study optoelectronic properties of the device for two different designs. The simulation results are very promising as they show feasible ways toward Ge emitter devices with lower threshold currents and higher efficiency as published insofar.
  • Item
    Synthesis of Doped Porous 3D Graphene Structures by Chemical Vapor Deposition and Its Applications
    (Weinheim : Wiley-VCH, 2019) Ullah, Sami; Hasan, Maria; Ta, Huy Q.; Zhao, Liang; Shi, Qitao; Fu, Lei; Choi, Jinho; Yang, Ruizhi; Liu, Zhongfan; Rümmeli, Mark H.
    Graphene doping principally commenced to compensate for its inert nature and create an appropriate bandgap. Doping of 3D graphene has emerged as a topic of interest because of attempts to combine its large available surface area—arising from its interconnected porous architecture—with superior catalytic, structural, chemical, and biocompatible characteristics that can be induced by doping. In light of the latest developments, this review provides an overview of the scalable chemical vapor deposition (CVD)-based growth of doped 3D graphene materials as well as their applications in various contexts, such as in devices used for energy generation and gas storage and biosensors. In particular, single- and multielement doping of 3D graphene by various dopants (such as nitrogen (N), boron (B), sulfur (S) and phosphorous (P)), the doping configurations of the resultant materials, an overview of recent developments in the field of CVD, and the influence of various parameters of CVD on graphene doping and 3D morphologies are focused in this paper. Finally, this report concludes the discussion by mentioning the existing challenges and future opportunities of these developing graphitic materials, intending to inspire the unveiling of more exciting functionalized 3D graphene morphologies and their potential properties, which can hopefully realize many possible applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Doping High-Mobility Donor : Acceptor Copolymer Semiconductors with an Organic Salt for High-Performance Thermoelectric Materials
    (Weinheim : Wiley-VCH Verlag GmbH & Co. KG, 2020) Guo, Jing; Li, Guodong; Reith, Heiko; Jiang, Lang; Wang, Ming; Li, Yuhao; Wang, Xinhao; Zeng, Zebing; Zhao, Huaizhou; Lu, Xinhui; Schierning, Gabi; Nielsch, Kornelius; Liao, Lei; Hu, Yuanyuan
    Organic semiconductors (OSCs) are attractive for fabrication of thermoelectric devices with low cost, large area, low toxicity, and high flexibility. In order to achieve high-performance organic thermoelectric devices (OTEs), it is essential to develop OSCs with high conductivity (σ), large Seebeck coefficient (S), and low thermal conductivity (κ). It is equally important to explore efficient dopants matching the need of thermoelectric devices. The thermoelectric performance of a high-mobility donor–acceptor (D–A) polymer semiconductor, which is doped by an organic salt, is studied. Both a high p-type electrical conductivity approaching 4 S cm−1 and an excellent power factor (PF) of 7 µW K−2 m−1 are obtained, which are among the highest reported values for polymer semiconductors. Temperature-dependent conductivity, Seebeck coefficient and power factor of the doped materials are systematically investigated. Detailed analysis on the results of thermoelectric measurements has revealed a hopping transport in the materials, which verifies the empirical relationship: S ∝ σ−1/4 and PF ∝ σ1/2. The results demonstrate that D–A copolymer semiconductors with proper combination of dopants have great potential for fabricating high-performance thermoelectric devices. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Electron-to Hole Transport Change Induced by Solvent Vapor Annealing of Naphthalene Diimide Doped with Poly(3-Hexylthiophene)
    (Lausanne : Frontiers Media, 2021) Janus, Krzysztof; Danielewicz, Kinga; Chlebosz, Dorota; Goldeman, Waldemar; Kiersnowski, Adam
    Herein we report on fabrication and properties of organic field-effect transistors (OFETs) based on the spray-coated films of N,N′-dioctyl naphthalene diimide (NDIC8) doped with 2.4 wt% of poly (3-hexylthiophene) (P3HT). OFETs with the untreated NDIC8:P3HT films revealed electron conductivity [μe* = 5 × 10–4 cm2×(Vs)−1]. After the annealing in chloroform vapor the NDIC8:P3HT films revealed the hole transport only [μh* = 0.9 × 10–4 cm2×(Vs)−1]. Due to the chemical nature and energy levels, the hole transport was not expected for NDIC8-based system. Polarized optical- and scanning electron microscopies indicated that the solvent vapor annealing of the NDIC8:P3HT films caused a transition of their fine-grained morphology to the network of branched, dendritic crystallites. Grazing incidence wide-angle X-ray scattering studies indicated that the above transition was accompanied by a change in the crystal structure of NDIC8. The isotropic crystal structure of NDIC8 in the untreated film was identical to the known crystal structure of the bulk NDIC8. After the solvent annealing the crystal structure of NDIC8 changed to a not-yet-reported polymorph, that, unlike in the untreated film, was partially oriented with respect to the OFET substrate.
  • Item
    Untersuchungen zum geordneten Wachstum von III-Nitrid Nanodrähten – Analyse der Nukleations-, Dekompositions- und Diffusionsmechanismen
    (Berlin : Humboldt-Universität zu Berlin, 2012) Gotschke, Tobias
    The influence of the Si- and Mg-doping of InN NWs as well as the selective area growth (SAG) of GaN NWs on Si substrates is developed, optimized and analyzed to obtain NWs with homogeneous periods, lengths and diameters. The variation of growth parameters for Si-doped InN NWs reveals a nonmonotonic morphology dependence and an extended growth window towards higher substrate temperatures. In addition, the NW density is reduced and the size homogeneity improved for high Si doping levels. In contrast, no impact on the morphology of the InN NWs is observed under Mg-doping. Nevertheless, indications of a successful incorporation of the Mg-acceptors are found by optical and electrical studies. The non-selective growth of GaN NWs at high substrate temperatures is investigated for various Ga-fluxes and substrate temperatures. Furthermore, the decomposition of GaN NWs is observed with an investigation of the NW morphology and the Ga desorption during growth. The nucleation on the mask (Si) and the substrate (AlN) is investigated with a new approach to define a growth window for the SAG. Within this window, the influence of the substrate temperature, growth time, Ga- and N-flux on the SAG is investigated by a separate variation for each parameter. An optimal set of growth parameters with respect to a homogeneous NW morphology is obtained. The growth on substrates with different mask types, mask materials and substrate materials reveals a novel nucleation mechanism. The asymmetric nucleation in the holes of the mask could be attributed to a local increase in the Ga-supply by blocking the impinging Ga-flux at the vertical sidewalls. The diffusion of Ga-atoms on the substrate and the NW is finally investigated. A descriptive model is proposed and the fit to experimental data reveals a diffusion length of 400 nm. The limitation of the axial growth is explained by the diffusion length of Ga atoms on the NW sidewall and a diffusion length of approximately 500 nm is obtained. Zugriffsstatistik:
  • Item
    Interface polarization model for a 2-dimensional electron gas at the BaSnO3/LaInO3 interface
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Kim, Young Mo; Markurt, T.; Kim, Youjung; Zupancic, M.; Shin, Juyeon; Albrecht, M.; Char, Kookrin
    In order to explain the experimental sheet carrier density n2D at the interface of BaSnO3/LaInO3, we consider a model that is based on the presence of interface polarization in LaInO3 which extends over 2 pseudocubic unit cells from the interface and eventually disappears in the next 2 unit cells. Considering such interface polarization in calculations based on 1D Poisson-Schrödinger equations, we consistently explain the dependence of the sheet carrier density of BaSnO3/LaInO3 heterinterfaces on the thickness of the LaInO3 layer and the La doping of the BaSnO3 layer. Our model is supported by a quantitative analysis of atomic position obtained from high resolution transmission electron microscopy which evidences suppression of the octahedral tilt and a vertical lattice expansion in LaInO3 over 2–3 pseudocubic unit cells at the coherently strained interface.