Search Results

Now showing 1 - 2 of 2
  • Item
    On the influence of density and morphology on the Urban Heat Island intensity
    ([London] : Nature Publishing Group UK, 2020) Li, Yunfei; Schubert, Sebastian; Kropp, Jürgen P.; Rybski, Diego
    The canopy layer urban heat island (UHI) effect, as manifested by elevated near-surface air temperatures in urban areas, exposes urban dwellers to additional heat stress in many cities, specially during heat waves. We simulate the urban climate of various generated cities under the same weather conditions. For mono-centric cities, we propose a linear combination of logarithmic city area and logarithmic gross building volume, which also captures the influence of building density. By studying various city shapes, we generalise and propose a reduced form to estimate UHI intensities based only on the structure of urban sites, as well as their relative distances. We conclude that in addition to the size, the UHI intensity of a city is directly related to the density and an amplifying effect that urban sites have on each other. Our approach can serve as a UHI rule of thumb for the comparison of urban development scenarios.
  • Item
    Doppler lidar studies of heat island effects on vertical mixing of aerosols during SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Engelmann, Ronny; Ansmann, Albert; Horn, Stefan; Seifert, Patric; Althausen, Dietrich; Tesche, Matthias; Esselborn, Michael; Fruntke, Julia; Lieke, Kirsten; Freudenthaler, Volker; Gross, Silke
    A wind Doppler lidar was deployed next to three aerosol lidars during the SAMUM–2 campaign on the main island of Cape Verde. The effects of the differential heating of the island and the surrounding ocean and the orographic impact of the capital island Santiago and the small island on its luv side, Maio, are investigated. Horizontal and vertical winds were measured in the disturbed maritime boundary layer and compared to local radiosoundings. Lidar measurements from the research aircraft Falcon and a 3-D Large Eddy Simulation (LES) model were used in addition to study the heating effects on the scale of the islands. Indications are found that these effects can widely control the downward mixing from greater heights to the surface of African aerosols, mainly Saharan dust and biomass-burning smoke, which were detected in a complex layering over the Cape Verde region.