Search Results

Now showing 1 - 10 of 11
  • Item
    Advanced GeSn/SiGeSn Group IV Heterostructure Lasers
    (Weinheim : Wiley-VCH, 2018) von den Driesch, Nils; Stange, Daniela; Rainko, Denis; Povstugar, Ivan; Zaumseil, Peter; Capellini, Giovanni; Schröder, Thomas; Denneulin, Thibaud; Ikonic, Zoran; Hartmann, Jean-Michel; Sigg, Hans; Mantl, Siegfried; Grützmacher, Detlev; Buca, Dan
    Growth and characterization of advanced group IV semiconductor materials with CMOS-compatible applications are demonstrated, both in photonics. The investigated GeSn/SiGeSn heterostructures combine direct bandgap GeSn active layers with indirect gap ternary SiGeSn claddings, a design proven its worth already decades ago in the III–V material system. Different types of double heterostructures and multi-quantum wells (MQWs) are epitaxially grown with varying well thicknesses and barriers. The retaining high material quality of those complex structures is probed by advanced characterization methods, such as atom probe tomography and dark-field electron holography to extract composition parameters and strain, used further for band structure calculations. Special emphasis is put on the impact of carrier confinement and quantization effects, evaluated by photoluminescence and validated by theoretical calculations. As shown, particularly MQW heterostructures promise the highest potential for efficient next generation complementary metal-oxide-semiconductor (CMOS)-compatible group IV lasers.
  • Item
    Comparison of Ultraviolet B Light‐Emitting Diodes with Single or Triple Quantum Wells
    (Weinheim : Wiley-VCH, 2021) Kolbe, Tim; Knauer, Arne; Ruschel, Jan; Rass, Jens; Kyong Cho, Hyun; Hagedorn, Sylvia; Glaab, Johannes; Lobo Ploch, Neysha; Einfeldt, Sven; Weyers, Markus
    Light-emitting diodes (LEDs) with an emission wavelength of 310 nm containing either a single or a triple quantum well are compared regarding their efficiency and long-term stability. In addition, the influence of the thickness of the lower quantum well barrier and the quantum well thickness in single quantum well (SQW) LEDs is investigated. Electroluminescence measurements show a 28% higher initial output power for the SQW LEDs compared with the triple quantum well (TQW) LEDs because of larger spatial overlap of the carriers in the SQW as revealed by electro-optical simulations of the LED heterostructures. However, TQW LEDs show a higher output power than SQW LEDs after 1 h operation under harsh conditions. For SQW LEDs, it is found that for a thicker lower quantum well barrier (65 nm instead of 25 nm) the initial output power decreases by ≈15%. A thicker SQW (3 nm instead of 1.6 nm) reduces the initial output power by even 45% but increases the lifetime by a factor of 6 which is attributed to reduced Auger recombination from an enhanced spatial separation of electrons and holes in the quantum wells due to the quantum-confined Stark effect.
  • Item
    Axial GaAs/Ga(As, Bi) nanowire heterostructures
    (Bristol : IOP Publ., 2019) Oliva, Miriam; Gao, Guanhui; Luna, Esperanza; Geelhaar, Lutz; Lewis, Ryan B
    Bi-containing III-V semiconductors constitute an exciting class of metastable compounds with wide-ranging potential optoelectronic and electronic applications. However, the growth of III-V-Bi alloys requires group-III-rich growth conditions, which pose severe challenges for planar growth. In this work, we exploit the naturally-Ga-rich environment present inside the metallic droplet of a self-catalyzed GaAs nanowire (NW) to synthesize metastable GaAs/GaAs1-xBi x axial NW heterostructures with high Bi contents. The axial GaAs1-xBi x segments are realized with molecular beam epitaxy by first enriching only the vapor-liquid-solid (VLS) Ga droplets with Bi, followed by exposing the resulting Ga-Bi droplets to As2 at temperatures ranging from 270 °C to 380 °C to precipitate GaAs1-xBi x only under the NW droplets. Microstructural and elemental characterization reveals the presence of single crystal zincblende GaAs1-xBi x axial NW segments with Bi contents up to (10 ± 2)%. This work illustrates how the unique local growth environment present during the VLS NW growth can be exploited to synthesize heterostructures with metastable compounds. © 2019 IOP Publishing Ltd.
  • Item
    Towards Oxide Electronics: a Roadmap
    (Amsterdam : Elsevier B.V., 2019) Coll, M.; Fontcuberta, J.; Althammer, M.; Bibes, M.; Boschker, H.; Calleja, A.; Cheng, G.; Cuoco, M.; Dittmann, R.; Dkhil, B.; El Baggari, I.; Fanciulli, M.; Fina, I.; Fortunato, E.; Frontera, C.; Fujita, S.; Garcia, V.; Goennenwein, S.T.B.; Granqvist, C.-G.; Grollier, J.; Gross, R.; Hagfeldt, A.; Herranz, G.; Hono, K.; Houwman, E.; Huijben, M.; Kalaboukhov, A.; Keeble, D.J.; Koster, G.; Kourkoutis, L.F.; Levy, J.; Lira-Cantu, M.; MacManus-Driscoll, J.L.; Mannhart, J.; Martins, R.; Menzel, S.; Mikolajick, T.; Napari, M.; Nguyen, M.D.; Niklasson, G.; Paillard, C.; Panigrahi, S.; Rijnders, G.; Sánchez, F.; Sanchis, P.; Sanna, S.; Schlom, D.G.; Schroeder, U.; Shen, K.M.; Siemon, A.; Spreitzer, M.; Sukegawa, H.; Tamayo, R.; van den Brink, J.; Pryds, N.; Granozio, F.M.
    [No abstract available]
  • Item
    Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Tonkikh, A.A.; Voloshina, E.N.; Werner, P.; Blumtritt, H.; Senkovskiy, B.; Güntherodt, G.; Parkin, S.S.P.; Dedkov, Yu. S.
    Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to a large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and to close-packed surfaces of fcc-Ni(111) and hcp-Co(0001). Epitaxial deposition of h-BN on ferromagnetic metals is aimed at small interface scattering of charge and spin carriers. We report on the controlled growth of h-BN/Ni(111) by means of molecular beam epitaxy (MBE). Structural and electronic properties of this system are investigated using cross-section transmission electron microscopy (TEM) and electron spectroscopies which confirm good agreement with the properties of bulk h-BN. The latter are also corroborated by density functional theory (DFT) calculations, revealing that the first h-BN layer at the interface to Ni is metallic. Our investigations demonstrate that MBE is a promising, versatile alternative to both the exfoliation approach and chemical vapour deposition of h-BN.
  • Item
    Terahertz spin currents and inverse spin Hall effect in thin-film heterostructures containing complex magnetic compounds
    (Singapore [u.a.] : World Scientific Publishing, 2017-08-23) Seifert, T.; Martens, U.; Günther, S.; Schoen, M.A.W.; Radu, F.; Chen, X.Z.; Lucas, I.; Ramos, R.; Aguirre, M.H.; Algarabel, P.A.; Anadón, A.; Körner, H.; Walowski, J.; Back, C.; Ibarra, M.R.; Morellón, L.; Saitoh, E.; Wolf, M.; Song, C.; Uchida, K.; Münzenberg, M.; Radu, I.; Kampfrath, T.
    Terahertz emission spectroscopy (TES) of ultrathin multilayers of magnetic and heavy metals has recently attracted much interest. This method not only provides fundamental insights into photoinduced spin transport and spin–orbit interaction at highest frequencies, but has also paved the way for applications such as efficient and ultrabroadband emitters of terahertz (THz) electromagnetic radiation. So far, predominantly standard ferromagnetic materials have been exploited. Here, by introducing a suitable figure of merit, we systematically compare the strength of THz emission from X/Pt bilayers with X being a complex ferro-, ferri- and antiferromagnetic metal, that is, dysprosium cobalt (DyCo5), gadolinium iron (Gd24Fe76), magnetite (Fe3O4) and iron rhodium (FeRh). We find that the performance in terms of spin-current generation not only depends on the spin polarization of the magnet’s conduction electrons, but also on the specific interface conditions, thereby suggesting TES to be a highly interface-sensitive technique. In general, our results are relevant for all applications that rely on the optical generation of ultrafast spin currents in spintronic metallic multilayers.
  • Item
    Growth of graphene/hexagonal boron nitride heterostructures using molecular beam epitaxy
    (Berlin : Humboldt-Universität zu Berlin, 2018) Nakhaie, Siamak
    Zweidimensionale (2D) Materialien bieten eine Vielzahl von neuartigen Eigenschaften und sind aussichtsreich Kandidaten für ein breites Spektrum an Anwendungen. Da hexagonales Bornitrid (h-BN) für eine Integration in Heterostrukturen mit anderen 2D Materialien geeignet ist, erweckte dieses in letzter Zeit großes Interesse. Insbesondere van-der-Waals-Heterostrukturen, welche h-BN und Graphen verbinden, weisen viele potenzielle Vorteile auf, verbleiben in ihrer großflächigen Herstellung von kontinuierlichen Filmen allerdings problematisch. Diese Dissertation stellt eine Untersuchung betreffend des Wachstums von h-BN und vertikalen Heterostrukturen von Graphen und h-BN auf Ni-Substraten durch Molekularstrahlepitaxie (MBE) vor. Zuerst wurde das Wachstum von h-BN mittels elementarer B- und N-Quellen auf Ni als Wachstumssubstrat untersucht. Kristalline h-BN-Schichten konnten durch Raman-spektroskopie nachgewiesen werden. Wachstumsparameter für kontinuierliche und atomar dünne Schichten wurden erlangt. Das Keimbildungs- und Wachstumsverhalten so wie die strukturelle Güte von h-BN wurden mittels einer systemischen Veränderung der Wachstumstemperatur und -dauer untersucht. Die entsprechenden Beobachtungen wie der Änderungen der bevorzugten Keimbildungszentren, der Kristallgröße und der Bedeckung des h-BN wurden diskutiert. Ein Wachstum von großflächigen vertikalen h-BN/Graphen Heterostrukturen (h-BN auf Graphen) konnte mittels einem neuartigen, MBE-basierenden Verfahren demonstriert werden, welche es h-BN und Graphen jeweils erlaubt sich in der vorteilhaften Wachstumsumgebung, welche von Ni bereitgestellt wird, zu formen. In diesem Verfahren formt sich Graphen an der Schnittstelle von h-BN und Ni durch Präzipitation von zuvor in der Ni-Schicht eingebrachten C-Atomen. Schließlich konnte noch ein großflächiges Wachstum von Graphen/h-BN-Heterostrukturen (Graphen auf h-BN) durch das direkte abscheiden von C auf MBE-gewachsenen h-BN gezeigt werden.
  • Item
    Electro-reaction-diffusion systems in heterostructures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2000) Glitzky, Annegret; Hünlich, Rolf
    The paper is devoted to the mathematical investigation of a general class of electro-reaction-diffusion systems with nonsmooth data which arises in applications to semiconductor technology. Besides of a basic problem, a reduced problem is considered which is obtained if the kinetics of the free carriers is fast. For two dimensional domains we prove a global existence and uniqueness result. In addition, asymptotic properties of solutions are studied. Basic ideas are energy estimates, Moser iteration, regularization techniques and an existence result for electro-diffusion systems with weakly nonlinear volume and boundary source terms which is proved in the paper, too. The relationship between the property that the energy functional decays exponentially in time to its equilibrium value and the existence of global positive lower bounds for the densities of the species is investigated. We illustrate relations between the model and its reduced version in general and for concrete examples. Finally, we discuss the special features of heterostructures for simplified model problems.
  • Item
    Convergence of an implicit Voronoi finite volume method for reaction-diffusion problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Fiebach, André; Glitzky, Annegret; Linke, Alexander
    We investigate the convergence of an implicit Voronoi finite volume method for reaction- diffusion problems including nonlinear diffusion in two space dimensions. The model allows to handle heterogeneous materials and uses the chemical potentials of the involved species as primary variables. The numerical scheme uses boundary conforming Delaunay meshes and preserves positivity and the dissipative property of the continuous system. Starting from a result on the global stability of the scheme (uniform, mesh-independent global upper and lower bounds), we prove strong convergence of the chemical activities and their gradients to a weak solution of the continuous problem. In order to illustrate the preservation of qualitative properties by the numerical scheme, we present a long-term simulation of the Michaelis-Menten-Henri system. Especially, we investigate the decay properties of the relative free energy and the evolution of the dissipation rate over several magnitudes of time, and obtain experimental orders of convergence for these quantities.
  • Item
    Uniform global bounds for solutions of an implicit Voronoi finite volume method for reaction-diffusion problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Fiebach, André; Glitzky, Annegret; Linke, Alexander
    We consider discretizations for reaction-diffusion systems with nonlinear diffusion in two space dimensions. The applied model allows to handle heterogeneous materials and uses the chemical potentials of the involved species as primary variables. We propose an implicit Voronoi finite volume discretization on regular Delaunay meshes that allows to prove uniform, mesh-independent global upper and lower L bounds for the chemical potentials. These bounds provide the main step for a convergence analysis for the full discretized nonlinear evolution problem. The fundamental ideas are energy estimates, a discrete Moser iteration and the use of discrete Gagliardo-Nirenberg inequalities. For the proof of the Gagliardo-Nirenberg inequalities we exploit that the discrete Voronoi finite volume gradient norm in 2d coincides with the gradient norm of continuous piecewise linear finite elements.