Search Results

Now showing 1 - 5 of 5
  • Item
    Carbons and electrolytes for advanced supercapacitors
    (Hoboken, NJ : Wiley, 2014) Presser, Volker
    Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.
  • Item
    Molecular Liquids versus Ionic Liquids: The Interplay between Inter-Molecular and Intra-Molecular Hydrogen Bonding as Seen by Vaporisation Thermodynamics
    (Basel : MDPI, 2023) Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Ludwig, Ralf
    In this study, we determined the enthalpies of vaporisation for a suitable set of molecular and ionic liquids using modern techniques for vapour pressure measurements, such as the quartz crystal microbalance, thermogravimetric analysis (TGA), and gas chromatographic methods. This enabled us to measure reasonable vapour pressures, avoiding the problem of the decomposition of the ionic liquids at high temperatures. The enthalpies of vaporisation could be further analysed by applying the well-known “group contribution” methods for molecular liquids and the “centerpiece” method for ionic liquids. This combined approach allowed for the dissection of the enthalpies of vaporisation into different types of molecular interaction, including hydrogen bonding and the dispersion interaction in the liquid phase, without knowing the existing species in both the liquid and gas phases.
  • Item
    Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers
    ([London] : Nature Publishing Group UK, 2017) He, Hongkun; Rahimi, Khosrow; Zhong, Mingjiang; Mourran, Ahmed; Luebke, David R.; Nulwala, Hunaid B.; Möller, Martin; Matyjaszewski, Krzysztof
    Cubosomes are micro- and nanoparticles with a bicontinuous cubic two-phase structure, reported for the self-assembly of low molecular weight surfactants, for example, lipids, but rarely formed by polymers. These objects are characterized by a maximum continuous interface and high interface to volume ratio, which makes them promising candidates for efficient adsorbents and host-guest applications. Here we demonstrate self-assembly to nanoscale cuboidal particles with a bicontinuous cubic structure by amphiphilic poly(ionic liquid) diblock copolymers, poly(acrylic acid)-block-poly(4-vinylbenzyl)-3-butyl imidazolium bis(trifluoromethylsulfonyl)imide, in a mixture of tetrahydrofuran and water under optimized conditions. Structure determining parameters include polymer composition and concentration, temperature, and the variation of the solvent mixture. The formation of the cubosomes can be explained by the hierarchical interactions of the constituent components. The lattice structure of the block copolymers can be transferred to the shape of the particle as it is common for atomic and molecular faceted crystals.
  • Item
    1-Butyl-3-methyl­imidazolium tri­bromido­(tri­phenyl­phosphane-κP)nickelate(II) butan-1-ol hemisolvate
    (Chester : IUCr, 2021) Peppel, T.; Köckerling, M.
    The solvated title salt, (C8H15N2)[NiBr3(P(C6H5)3)]·0.5C4H10O, was obtained in the form of single crystals directly from the reaction mixture. The mol­ecular structure consists of separated 1-butyl-3-methyl­imidazolium cations, tri­bromido­(tri­phenyl­phosphane)nickelate(II) anions and half a solvent mol­ecule of 1-butanol, all connected via multiple hydrogen contacts to form a three-dimensional network. The co-crystallized 1-butanol mol­ecule is disordered and adopts two orientations. The central C—C bonds of both orientations are located on an inversion centre (Wyckoff site 2b of space group P21/n). Thereby, each orientation has again two orientations with the OH group being located either on one or the other side of the C4 alkyl chain. The dried solvent-free compound exhibits a relatively low melting point (m.p. = 412 K).
  • Item
    1-Benzyl-3-methylimidazolium bromide
    (Chester : IUCr, 2020) Peppel, Tim; Wulf, Christoph; Spannenberg, Anke
    [no abstract available]