Search Results

Now showing 1 - 2 of 2
  • Item
    Voltage-Controlled ON-OFF-Switching of Magnetoresistance in FeOx/Fe/Au Aerogel Networks
    (Washington, DC : ACS Publications, 2023) Nichterwitz, Martin; Hiekel, Karl; Wolf, Daniel; Eychmüller, Alexander; Leistner, Karin
    Voltage control of magnetoresistance (MR) in nanoscale three-dimensional (3D) geometries is interesting from a fundamental point of view and a promising route toward novel sensors and energy-efficient computing schemes. Magneto-ionic mechanisms are favorable for low-voltage control of magnetism and room-temperature operation, but magneto-ionic control of MR has been studied only for planar geometries so far. We synthesize a 3D nanomaterial with magneto-ionic functionality by electrodepositing an iron hydroxide/iron coating on a porous nanoscale gold network (aerogel). To enable maximum magneto-ionic ON-OFF-switching, the thickness of the coating is adjusted to a few nanometers by a self-terminating electrodeposition process. In situ magnetotransport measurements during electrolytic gating of these nanostructures reveal large reversible changes in MR, including ON-OFF-switching of MR, with a small applied voltage difference (1.72 V). This effect is related to the electrochemical switching between a ferromagnetic iron shell/gold core nanostructure (negative MR at the reduction voltage) and an iron oxide shell/gold core nanostructure (negligible MR at the oxidation voltage).
  • Item
    Modal Frustration and Periodicity Breaking in Artificial Spin Ice
    (Weinheim : Wiley-VCH, 2020) Puttock, Robert; Manzin, Alessandra; Neu, Volker; Garcia-Sanchez, Felipe; Scarioni, Alexander Fernandez; Schumacher, Hans W.; Kazakova, Olga
    Here, an artificial spin ice lattice is introduced that exhibits unique Ising and non-Ising behavior under specific field switching protocols because of the inclusion of coupled nanomagnets into the unit cell. In the Ising regime, a magnetic switching mechanism that generates a uni- or bimodal distribution of states dependent on the alignment of the field is demonstrated with respect to the lattice unit cell. In addition, a method for generating a plethora of randomly distributed energy states across the lattice, consisting of Ising and Landau states, is investigated through magnetic force microscopy and micromagnetic modeling. It is demonstrated that the dispersed energy distribution across the lattice is a result of the intrinsic design and can be finely tuned through control of the incident angle of a critical field. The present manuscript explores a complex frustrated environment beyond the 16-vertex Ising model for the development of novel logic-based technologies. © 2020 The Authors. Published by Wiley-VCH GmbH