Search Results

Now showing 1 - 5 of 5
  • Item
    Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales
    (München : European Geopyhsical Union, 2012) Werner, C.; Schnyder, H.; Cunt, M.; Keitel, C.; Zeeman, M.J.; Dawson, T.E.; Badeck, F.-W.; Brugnoli, E.; Ghashghaie, J.; Grams, T.E.E.; Kayler, Z.E.; Lakatos, M.; Lee, X.; Máguas, C.; Ogée, J.; Rascher, K.G.; Siegwolf, R.T.W.; Unger, S.; Welker, J.; Wingate, L.; Gessler, A.
    Stable isotope analysis is a powerful tool for assessing plant carbon and water relations and their impact on biogeochemical processes at different scales. Our process-based understanding of stable isotope signals, as well as technological developments, has progressed significantly, opening new frontiers in ecological and interdisciplinary research. This has promoted the broad utilisation of carbon, oxygen and hydrogen isotope applications to gain insight into plant carbon and water cycling and their interaction with the atmosphere and pedosphere. Here, we highlight specific areas of recent progress and new research challenges in plant carbon and water relations, using selected examples covering scales from the leaf to the regional scale. Further, we discuss strengths and limitations of recent technological developments and approaches and highlight new opportunities arising from unprecedented temporal and spatial resolution of stable isotope measurements.
  • Item
    A complete representation of uncertainties in layer-counted paleoclimatic archives
    (München : European Geopyhsical Union, 2017) Boers, Niklas; Goswami, Bedartha; Ghil, Michael
    Accurate time series representation of paleoclimatic proxy records is challenging because such records involve dating errors in addition to proxy measurement errors. Rigorous attention is rarely given to age uncertainties in paleoclimatic research, although the latter can severely bias the results of proxy record analysis. Here, we introduce a Bayesian approach to represent layer-counted proxy records – such as ice cores, sediments, corals, or tree rings – as sequences of probability distributions on absolute, error-free time axes. The method accounts for both proxy measurement errors and uncertainties arising from layer-counting-based dating of the records. An application to oxygen isotope ratios from the North Greenland Ice Core Project (NGRIP) record reveals that the counting errors, although seemingly small, lead to substantial uncertainties in the final representation of the oxygen isotope ratios. In particular, for the older parts of the NGRIP record, our results show that the total uncertainty originating from dating errors has been seriously underestimated. Our method is next applied to deriving the overall uncertainties of the Suigetsu radiocarbon comparison curve, which was recently obtained from varved sediment cores at Lake Suigetsu, Japan. This curve provides the only terrestrial radiocarbon comparison for the time interval 12.5–52.8 kyr BP. The uncertainties derived here can be readily employed to obtain complete error estimates for arbitrary radiometrically dated proxy records of this recent part of the last glacial interval.
  • Item
    Age–depth model of the past 630 kyr for Lake Ohrid (FYROM/Albania) based on cyclostratigraphic analysis of downhole gamma ray data
    (Katlenburg-Lindau : European Geosciences Union, 2015) Baumgarten, H.; Wonik, T.; Tanner, D.C.; Francke, A.; Wagner, B.; Zanchetta, G.; Sulpizio, R.; Giaccio, B.; Nomade, S.
    Gamma ray (GR) fluctuations and potassium (K) values from downhole logging data obtained in the sediments of Lake Ohrid from 0 to 240 m below lake floor (b.l.f). correlate with fluctuations in δ18O values from the global benthic isotope stack LR04 (Lisiecki and Raymo, 2005). GR and K values are considered a reliable proxy to depict glacial-interglacial cycles, with high clastic input during cold and/or drier periods and high carbonate precipitation during warm and/or humid periods at Lake Ohrid. Spectral analysis was applied to investigate the climate signal and evolution over the length of the borehole. Linking downhole logging data with orbital cycles was used to estimate sedimentation rates and the effect of compaction was compensated for. Sedimentation rates increase on average by 14 % after decompaction of the sediment layers and the mean sedimentation rates shift from 45 cm kyr-1 between 0 and 110 m to 30 cm kyr-1 from 110 to 240 m b.l.f. Tuning of minima and maxima of gamma ray and potassium values versus LR04 extrema, in combination with eight independent tephrostratigraphical tie points, allows establishing of a robust age model for the downhole logging data over the past 630 kyr. © Author(s) 2015.
  • Item
    Northern Mediterranean climate since the Middle Pleistocene: a 637 ka stable isotope record from Lake Ohrid (Albania/Macedonia)
    (Katlenburg-Lindau : European Geosciences Union, 2016) Lacey, Jack H.; Leng, Melanie J.; Francke, Alexander; Sloane, Hilary J.; Milodowski, Antoni; Vogel, Hendrik; Baumgarten, Henrike; Zanchetta, Giovanni; Wagner, Bernd
    Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid. © Author(s) 2016.
  • Item
    Mediterranean climate since the Middle Pleistocene: A 640 ka stable isotope record from Lake Ohrid (Albania/Macedonia)
    (Katlenburg-Lindau : European Geosciences Union, 2015) Lacey, J.H.; Leng, M.J.; Francke, A.; Sloane, H.J.; Milodowski, A.; Vogel, H.; Baumgarten, H.; Wagner, B.
    Lake Ohrid (Macedonia/Albania) is an ancient lake with a unique biodiversity and a site of global significance for investigating the influence of climate, geological and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data on carbonate from the upper ca. 248 m of sediment cores recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project, covering the past 640 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the Total Inorganic Carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle, comprising abundant endogenic calcite through interglacials and being almost absent in glacials, apart from discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite(δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to hydroclimate fluctuations on orbital and millennial timescales. We also measured isotopes on authigenic siderite (δ18Os and δ13Cs) and, with the δ18OCc and δ18Os, reconstruct δ18O of lakewater (δ18Olw) through the 640 ka. Overall, glacials have lower δ18Olw when compared to interglacials, most likely due to cooler summer temperatures, a higher proportion of winter precipitation (snowfall), and a reduced inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability through Marine Isotope Stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial, and was isotopically freshest during MIS 9. After MIS 9, the variability between glacial and interglacial δ18Olw is enhanced and the lake became increasingly evaporated through to present day with MIS 5 having the highest average δ18Olw. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within the lake.