Search Results

Now showing 1 - 7 of 7
  • Item
    Polarization lidar: An extended three-signal calibration approach
    (Katlenburg-Lindau : Copernicus, 2019) Jimenez, Cristofer; Ansmann, Albert; Engelmann, Ronny; Haarig, Moritz; Schmidt, Jörg; Wandinger, Ulla
    We present a new formalism to calibrate a threesignal polarization lidar and to measure highly accurate height profiles of the volume linear depolarization ratios under realistic experimental conditions. The methodology considers elliptically polarized laser light, angular misalignment of the receiver unit with respect to the main polarization plane of the laser pulses, and cross talk among the receiver channels. A case study of a liquid-water cloud observation demonstrates the potential of the new technique. Long-term observations of the calibration parameters corroborate the robustness of the method and the long-term stability of the three-signal polarization lidar. A comparison with a second polarization lidar shows excellent agreement regarding the derived volume linear polarization ratios in different scenarios: A biomass burning smoke event throughout the troposphere and the lower stratosphere up to 16 km in height, a dust case, and also a cirrus cloud case. © Author(s) 2019.
  • Item
    Lumped Parameter Model for Silicon Crystal Growth from Granulate Crucible
    (Weinheim : Wiley-VCH, 2020) Lorenz-Meyer, M. Nicolai L.; Menzel, Robert; Dadzis, Kaspars; Nikiforova, Angelina; Riemann, Helge
    In the present paper, a lumped parameter model for the novel Silicon Granulate Crucible (SiGC) method is proposed, which is the basis for a future model-based control system for the process. The model is analytically deduced based on the hydromechanical, geometrical, and thermal conditions of the process. Experiments are conducted to identify unknown model parameters and to validate the model. The physical consistency of the model is verified using simulation studies and a prediction error of below 2% is reached. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4
    ([London] : Nature Publishing Group UK, 2019) Zvyagin, S.A.; Graf, D.; Sakurai, T.; Kimura, S.; Nojiri, H.; Wosnitza, J.; Ohta, H.; Ono, T.; Tanaka, H.
    Quantum triangular-lattice antiferromagnets are important prototype systems to investigate numerous phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs2CuCl4 as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high-pressure electron spin resonance and r.f. susceptibility measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8 GPa, revealing a number of emergent field-induced phases.
  • Item
    Chirality coupling in topological magnetic textures with multiple magnetochiral parameters
    ([London] : Nature Publishing Group UK, 2023) Volkov, Oleksii M.; Wolf, Daniel; Pylypovskyi, Oleksandr V.; Kákay, Attila; Sheka, Denis D.; Büchner, Bernd; Fassbender, Jürgen; Lubk, Axel; Makarov, Denys
    Chiral effects originate from the lack of inversion symmetry within the lattice unit cell or sample’s shape. Being mapped onto magnetic ordering, chirality enables topologically non-trivial textures with a given handedness. Here, we demonstrate the existence of a static 3D texture characterized by two magnetochiral parameters being magnetic helicity of the vortex and geometrical chirality of the core string itself in geometrically curved asymmetric permalloy cap with a size of 80 nm and a vortex ground state. We experimentally validate the nonlocal chiral symmetry breaking effect in this object, which leads to the geometric deformation of the vortex string into a helix with curvature 3 μm−1 and torsion 11 μm−1. The geometric chirality of the vortex string is determined by the magnetic helicity of the vortex texture, constituting coupling of two chiral parameters within the same texture. Beyond the vortex state, we anticipate that complex curvilinear objects hosting 3D magnetic textures like curved skyrmion tubes and hopfions can be characterized by multiple coupled magnetochiral parameters, that influence their statics and field- or current-driven dynamics for spin-orbitronics and magnonics.
  • Item
    Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer
    (Katlenburg-Lindau : Copernicus, 2018-5-18) Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell III, James M.
    For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector. OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09∘ N, 11.28∘ E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30∘ N, 13.02∘ E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar. In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.
  • Item
    Assessment of reduced order Kalman filter for parameter identification in one-dimensional blood flow models using experimental data
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Caiazzo, Alfonso; Caforio, Federica; Montecinos, Gino; Müller, Lucas O.; Blanco, Pablo J.; Toro, Eleutero F.
    This work presents a detailed investigation of a parameter estimation approach based on the reduced order unscented Kalman filter (ROUKF) in the context of one-dimensional blood flow models. In particular, the main aims of this study are (i) to investigate the effect of using real measurements vs. synthetic data (i.e., numerical results of the same in silico model, perturbed with white noise) for the estimation and (ii) to identify potential difficulties and limitations of the approach in clinically realistic applications in order to assess the applicability of the filter to such setups. For these purposes, our numerical study is based on the in vitro model of the arterial network described by [Alastruey et al. 2011, J. Biomech. 44], for which experimental flow and pressure measurements are available at few selected locations. In order to mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Youngs modulus and thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis based on the generalized sensitivity function, comparing then the results obtained with the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements.
  • Item
    Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis
    (Katlenburg-Lindau : Copernicus, 2020) Albrecht, Torsten; Winkelmann, Ricarda; Levermann, Anders
    The Parallel Ice Sheet Model (PISM) is applied to the Antarctic Ice Sheet over the last two glacial cycles (≈210 000 years) with a resolution of 16 km. An ensemble of 256 model runs is analyzed in which four relevant model parameters have been systematically varied using full-factorial parameter sampling. Parameters and plausible parameter ranges have been identified in a companion paper (Albrecht et al., 2020) and are associated with ice dynamics, climatic forcing, basal sliding and bed deformation and represent distinct classes of model uncertainties. The model is scored against both modern and geologic data, including reconstructed grounding-line locations, elevation–age data, ice thickness, surface velocities and uplift rates. An aggregated score is computed for each ensemble member that measures the overall model–data misfit, including measurement uncertainty in terms of a Gaussian error model (Briggs and Tarasov, 2013). The statistical method used to analyze the ensemble simulation results follows closely the simple averaging method described in Pollard et al. (2016). This analysis reveals clusters of best-fit parameter combinations, and hence a likely range of relevant model and boundary parameters, rather than individual best-fit parameters. The ensemble of reconstructed histories of Antarctic Ice Sheet volumes provides a score-weighted likely range of sea-level contributions since the Last Glacial Maximum (LGM) of 9.4±4.1 m (or 6.5±2.0×106km3 ), which is at the upper range of most previous studies. The last deglaciation occurs in all ensemble simulations after around 12 000 years before present and hence after the meltwater pulse 1A (MWP1a). Our ensemble analysis also provides an estimate of parametric uncertainty bounds for the present-day state that can be used for PISM projections of future sea-level contributions from the Antarctic Ice Sheet.