Search Results

Now showing 1 - 9 of 9
  • Item
    The h-index
    (München : De Gruyter Saur, 2021) Fraumann, Grischa; Mutz, Rüdiger
    The h-index is a mainstream bibliometric indicator, since it is widely used in academia, research management and research policy. While its advantages have been highlighted, such as its simple calculation, it has also received widespread criticism. The criticism is mainly based on the negative effects it may have on scholars, when the index is used to describe the quality of a scholar. The “h” means “highly-cited” and “high achievement”, and should not be confused with the last name of its inventor, Hirsch. Put simply, the h-index combines a measure of quantity and impact in a single indicator. Several initiatives try to provide alternatives to the h-index to counter some of its shortcomings.
  • Item
    Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis
    (Cambridge : eLife Sciences Publications, 2021) Hinzke, Tjorven; Kleiner, Manuel; Meister, Mareike; Schlüter, Rabea; Hentschker, Christian; Pané-Farré, Jan; Hildebrandt, Petra; Felbeck, Horst; Sievert, Stefan M; Bonn, Florian; Völker, Uwe; Becher, Dörte; Schweder, Thomas; Markert, Stephanie
    The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
  • Item
    Key determinants of global land-use projections
    ([London] : Nature Publishing Group UK, 2019) Stehfest, Elke; van Zeist, Willem-Jan; Valin, Hugo; Havlik, Petr; Popp, Alexander; Kyle, Page; Tabeau, Andrzej; Mason-D’Croz, Daniel; Hasegawa, Tomoko; Bodirsky, Benjamin L.; Calvin, Katherine; Doelman, Jonathan C.; Fujimori, Shinichiro; Humpenöder, Florian; Lotze-Campen, Hermann; van Meijl, Hans; Wiebe, Keith
    Land use is at the core of various sustainable development goals. Long-term climate foresight studies have structured their recent analyses around five socio-economic pathways (SSPs), with consistent storylines of future macroeconomic and societal developments; however, model quantification of these scenarios shows substantial heterogeneity in land-use projections. Here we build on a recently developed sensitivity approach to identify how future land use depends on six distinct socio-economic drivers (population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade) and their interactions. Spread across models arises mostly from diverging sensitivities to long-term drivers and from various representations of land-use regulation and trade, calling for reconciliation efforts and more empirical research. Most influential determinants for future cropland and pasture extent are population and agricultural efficiency. Furthermore, land-use regulation and consumption changes can play a key role in reducing both land use and food-security risks, and need to be central elements in sustainable development strategies.
  • Item
    Productivity ranges of sustainable biomass potentials from non-agricultural land
    (Bristol : IOP Publishing, 2016) Schueler, Vivian; Fuss, Sabine; Steckel, Jan Christoph; Weddige, Ulf; Beringer, Tim
    Land is under pressure from a number of demands, including the need for increased supplies of bioenergy. While bioenergy is an important ingredient in many pathways compatible with reaching the 2 °C target, areas where cultivation of the biomass feedstock would be most productive appear to co-host other important ecosystems services. We categorize global geo-data on land availability into productivity deciles, and provide a geographically explicit assessment of potentials that are concurrent with EU sustainability criteria. The deciles unambiguously classify the global productivity range of potential land currently not in agricultural production for biomass cultivation. Results show that 53 exajoule (EJ) sustainable biomass potential are available from 167 million hectares (Mha) with a productivity above 10 tons of dry matter per hectare and year (tD Mha−1 a−1), while additional 33 EJ are available on 264 Mha with yields between 4 and 10 tD M ha−1 a−1: some regions lose less of their highly productive potentials to sustainability concerns than others and regional contributions to bioenergy potentials shift when less productive land is considered. Challenges to limit developments to the exploitation of sustainable potentials arise in Latin America, Africa and Developing Asia, while new opportunities emerge for Transition Economies and OECD countries to cultivate marginal land.
  • Item
    Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models
    (Hoboken, NJ : Blackwell Publishing Ltd, 2016) Johnson, M.O.; Galbraith, D.; Gloor, M.; De Deurwaerder, H.; Guimberteau, M.; Rammig, A.; Thonicke, K.; Verbeeck, H.; von Randow, C.; Monteagudo, A.; Phillips, O.L.; Brienen, R.J.W.; Feldpausch, T.R.; Lopez Gonzalez, G.; Fauset, S.; Quesada, C.A.; Christoffersen, B.; Ciais, P.; Sampaio, G.; Kruijt, B.; Meir, P.; Moorcroft, P.; Zhang, K.; Alvarez-Davila, E.; Alves de Oliveira, A.; Amaral, I.; Andrade, A.; Aragao, L.E.O.C.; Araujo-Murakami, A.; Arets, E.J.M.M.; Arroyo, L.; Aymard, G.A.; Baraloto, C.; Barroso, J.; Bonal, D.; Boot, R.; Camargo, J.; Chave, J.; Cogollo, A.; Cornejo Valverde, F.; Lola da Costa, A.C.; Di Fiore, A.; Ferreira, L.; Higuchi, N.; Honorio, E.N.; Killeen, T.J.; Laurance, S.G.; Laurance, W.F.; Licona, J.; Lovejoy, T.; Malhi, Y.; Marimon, B.; Marimon, B.H. Jr.; Matos, D.C.L.; Mendoza, C.; Neill, D.A.; Pardo, G.; Peña-Claros, M.; Pitman, N.C.A.; Poorter, L.; Prieto, A.; Ramirez-Angulo, H.; Roopsind, A.; Rudas, A.; Salomao, R.P.; Silveira, M.; Stropp, J.; ter Steege, H.; Terborgh, J.; Thomas, R.; Toledo, M.; Torres-Lezama, A.; van der Heijden, G.M.F.; Vasquez, R.; Guimarães Vieira, I.C.; Vilanova, E.; Vos, V.A.; Baker, T.R.
  • Item
    The function-dominance correlation drives the direction and strength of biodiversity-ecosystem functioning relationships
    (Oxford [u.a.] : Wiley-Blackwell, 2021) Crawford, Michael S.; Barry, Kathryn E.; Clark, Adam T.; Farrior, Caroline E.; Hines, Jes; Ladouceur, Emma; Lichstein, Jeremy W.; Maréchaux, Isabelle; May, Felix; Mori, Akira S.; Reineking, Björn; Turnbull, Lindsay A.; Wirth, Christian; Rüger, Nadja
    Community composition is a primary determinant of how biodiversity change influences ecosystem functioning and, therefore, the relationship between biodiversity and ecosystem functioning (BEF). We examine the consequences of community composition across six structurally realistic plant community models. We find that a positive correlation between species' functioning in monoculture versus their dominance in mixture with regard to a specific function (the "function-dominance correlation") generates a positive relationship between realised diversity and ecosystem functioning across species richness treatments. However, because realised diversity declines when few species dominate, a positive function-dominance correlation generates a negative relationship between realised diversity and ecosystem functioning within species richness treatments. Removing seed inflow strengthens the link between the function-dominance correlation and BEF relationships across species richness treatments but weakens it within them. These results suggest that changes in species' identities in a local species pool may more strongly affect ecosystem functioning than changes in species richness.
  • Item
    A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle
    (San Francisco, California, US : PLOS, 2018-11-1) Galán, Elena; Llonch, Pol; Villagrá, Arantxa; Levit, Harel; Pinto, Severino; del Prado, Agustín
    Introduction Projected temperature rise in the upcoming years due to climate change has increased interest in studying the effects of heat stress in dairy cows. Environmental indices are commonly used for detecting heat stress, but have been used mainly in studies focused on the productivity-related effects of heat stress. The welfare approach involves identifying physiological and behavioural measurements so as to start heat stress mitigation protocols before the appearance of impending severe health or production issues. Therefore, there is growing interest in studying the effects of heat stress on welfare. This systematic review seeks to summarise the animal-based responses to heat stress (physiological and behavioural, excluding productivity) that have been used in scientific literature. Methods Using systematic review guidelines set by PRISMA, research articles were identified, screened and summarised based on inclusion criteria for physiology and behaviour, excluding productivity, for animal-based resilience indicators. 129 published articles were reviewed to determine which animal-based indicators for heat stress were most frequently used in dairy cows. Results The articles considered report at least 212 different animal-based indicators that can be aggregated into body temperature, feeding, physiological response, resting, drinking, grazing and pasture-related behaviour, reactions to heat management and others. The most common physiological animal-based indicators are rectal temperature, respiration rate and dry matter intake, while the most common behavioural indicators are time spent lying, standing and feeding. Conclusion Although body temperature and respiration rate are the animal-based indicators most frequently used to assess heat stress in dairy cattle, when choosing an animal-based indicator for detecting heat stress using scientific literature to establish thresholds, characteristics that influence the scale of the response and the definition of heat stress must be taken into account, e.g. breed, lactation stage, milk yield, system type, climate region, bedding type, diet and cooling management strategies. © 2018 Galan∗E.∗Elena et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Item
    CUDe — Carbon utilization degree as an indicator for sustainable biomass use
    (Basel : MDPI, 2016) Anja Hansen, Anja Hansen; Budde, Jörn; Karatay, Yusuf Nadi; Prochnow, Annette
    Carbon (C) is a central element in organic compounds and is an indispensable resource for life. It is also an essential production factor in bio-based economies, where biomass serves many purposes, including energy generation and material production. Biomass conversion is a common case of transformation between different carbon-containing compounds. At each transformation step, C might be lost. To optimize the C use, the C flows from raw materials to end products must be understood. The estimation of how much of the initial C in the feedstock remains in consumable products and delivers services provides an indication of the C use efficiency. We define this concept as Carbon Utilization Degree (CUDe) and apply it to two biomass uses: biogas production and hemp insulation. CUDe increases when conversion processes are optimized, i.e., residues are harnessed and/or losses are minimized. We propose CUDe as a complementary approach for policy design to assess C as an asset for bio-based production. This may lead to a paradigm shift to see C as a resource that requires sustainable exploitation. It could complement the existing methods that focus solely on the climate impact of carbon.
  • Item
    Biomimetic light dilution using side-emitting optical fiber for enhancing the productivity of microalgae reactors
    (Berlin : Nature Publishing, 2019) Wondraczek, Lothar; Gründler, Alexander; Reupert, Aaron; Wondraczek, Katrin; Schmidt, Markus A.; Pohnert, Georg; Nolte, Stephan
    Photoautotrophic microbes present vast opportunities for sustainable lipid production, CO2 storage and green chemistry, for example, using microalgae beds to generate biofuels. A major challenge of microalgae cultivation and other photochemical reactors is the efficiency of light delivery. In order to break even on large scale, dedicated photon management will be required across all levels of reactor hierarchy – from the harvesting of light and its efficient injection and distribution inside of the reactor to the design of optical antenna and pathways of energy transfer on molecular scale. Here, we discuss a biomimetic approach for light dilution which enables homogeneous illumination of large reactor volumes with high optical density. We show that the immersion of side-emitting optical fiber within the reactor can enhance the fraction of illuminated volume by more than two orders of magnitude already at cell densities as low as ~5 104ml−1. Using the green algae Haematococcus pluvialis as a model system, we demonstrate an increase in the rate of reproduction by up to 93%. Beyond micoralgae, the versatile properties of side-emitting fiber enable the injection and dilution of light with tailored spectral and temporal characteristics into virtually any reactor containment.