Search Results

Now showing 1 - 3 of 3
  • Item
    Fibrillar elastomeric micropatterns create tunable adhesion even to rough surfaces
    (Hoboken, NJ : Wiley, 2016) Barreau, Viktoriia; Hensel, René; Guimard, Nathalie K.; Ghatak, Animangsu; McMeeking, Robert M.; Arzt, Eduard
    Biologically inspired, fibrillar dry adhesives continue to attract much attention as they are instrumental for emerging applications and technologies. To date, the adhesion of micropatterned gecko-inspired surfaces has predominantly been tested on stiff, smooth substrates. However, all natural and almost all artificial surfaces have roughnesses on one or more different length scales. In the present approach, micropillar-patterned PDMS surfaces with superior adhesion to glass substrates with different roughnesses are designed and analyzed. The results reveal for the first time adhesive and nonadhesive states depending on the micropillar geometry relative to the surface roughness profile. The data obtained further demonstrate that, in the adhesive regime, fibrillar gecko-inspired adhesive structures can be used with advantage on rough surfaces; this finding may open up new applications in the fields of robotics, biomedicine, and space exploration.
  • Item
    Etching of silicon surfaces using atmospheric plasma jets
    (Bristol : IOP Publ., 2015) Paetzelt, H.; Böhm, G.; Arnold, T.
    Local plasma-assisted etching of crystalline silicon by fine focused plasma jets provides a method for high accuracy computer controlled surface waviness and figure error correction as well as free form processing and manufacturing. We investigate a radio-frequency powered atmospheric pressure He/N2/CF4 plasma jet for the local chemical etching of silicon using fluorine as reactive plasma gas component. This plasma jet tool has a typical tool function width of about 0.5 to 1.8 mm and a material removal rate up to 0.068 mm3 min−1. The relationship between etching rate and plasma jet parameters is discussed in detail regarding gas composition, working distance, scan velocity and RF power. Surface roughness after etching was characterized using atomic force microscopy and white light interferometry. A strong smoothing effect was observed for etching rough silicon surfaces like wet chemically-etched silicon wafer backsides. Using the dwell-time algorithm for a deterministic surface machining by superposition of the local removal function of the plasma tool we show a fast and efficient way for manufacturing complex silicon structures. In this article we present two examples of surface processing using small local plasma jets.
  • Item
    Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections
    (Göttingen : Copernicus Publ., 2013) Krawczyk, C.M.; Buddensiek, M.-L.; Oncken, O.; Kukowski, N.
    With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads). Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth penetration in glass-bead layers thereby amounts to 5 cm. Thus, the presented mini-seismic device is already able to resolve structures within simple models of saturated porous media, so that multiple-offset seismic imaging of shallow sandbox models, that are structurally evolving, is generally feasible.