Search Results

Now showing 1 - 10 of 14
  • Item
    Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga
    (München : European Geopyhsical Union, 2013) Chi, X.; Winderlich, J.; Mayer, J.-C.; Panov, A.V.; Heimann, M.; Birmili, W.; Heintzenberg, J.; Cheng, Y.; Andreae, M.O.
    Siberia is one of few continental regions in the Northern Hemisphere where the atmosphere may sometimes approach pristine background conditions. We present the time series of aerosol and carbon monoxide (CO) measurements between September 2006 and December 2011 at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E). We investigate the seasonal, weekly and diurnal variations of aerosol properties (including absorption and scattering coefficients and derived parameters, such as equivalent black carbon (BCe), Ångström exponent, single scattering albedo, and backscattering ratio) and the CO mixing ratios. Criteria were established to distinguish polluted from near-pristine air masses, providing quantitative characteristics for each type. Depending on the season, 23–36% of the sampling time at ZOTTO was found to be representative of a clean atmosphere. The summer pristine data indicate that primary biogenic and secondary organic aerosol formation are quite strong particle sources in the Siberian taiga. The summer seasons 2007–2008 were dominated by an Aitken mode around 80 nm size, whereas the summer 2009 with prevailing easterly winds produced particles in the accumulation mode around 200 nm size. We found these differences to be mainly related to air temperature, through its effect on the production rates of biogenic volatile organic compounds (VOC) precursor gases. In winter, the particle size distribution peaked at 160 nm, and the footprint of clean background air was characteristic for aged particles from anthropogenic sources at great distances from ZOTTO and diluted biofuel burning emissions from domestic heating. The wintertime polluted air originates mainly from large cities south and southwest of the site; these particles have a dominant mode around 100 nm, and the ΔBCe / ΔCO ratio of 7–11 ng m−3 ppb−1 suggests dominant contributions from coal and biofuel burning for heating. During summer, anthropogenic emissions are the dominant contributor to the pollution particles at ZOTTO, while only 12% of the polluted events are classified as biomass-burning-dominated, but then often associated with extremely high CO concentrations and aerosol absorption coefficients. Two biomass-burning case studies revealed different ΔBCe / ΔCO ratios from different fire types, with the agricultural fires in April~2008 yielding a very high ratio of 21 ng m−3 ppb−1. Overall, we find that anthropogenic sources dominate the aerosol population at ZOTTO most of the time, even during nominally clean episodes in winter, and that near-pristine conditions are encountered only in the growing season and then only episodically.
  • Item
    Aerosol decadal trends - Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations
    (München : European Geopyhsical Union, 2013) Asmi, A.; Collaud Coen, M.; Ogren, J.A.; Andrews, E.; Sheridan, P.; Jefferson, A.; Weingartner, E.; Baltensperger, U.; Bukowiecki, N.; Lihavainen, H.; Kivekäs, N.; Asmi, E.; Aalto, P.P.; Kulmala, M.; Wiedensohler, A.; Birmili, W.; Hamed, A.; O'Dowd, C.; Jennings, S.G.; Weller, R.; Flentje, H.; Fjaeraa, A.M.; Fiebig, M.; Myhre, C.L.; Hallar, A.G.; Swietlicki, E.; Kristensson, A.; Laj, P.
    We have analysed the trends of total aerosol particle number concentrations (N) measured at long-term measurement stations involved either in the Global Atmosphere Watch (GAW) and/or EU infrastructure project ACTRIS. The sites are located in Europe, North America, Antarctica, and on Pacific Ocean islands. The majority of the sites showed clear decreasing trends both in the full-length time series, and in the intra-site comparison period of 2001–2010, especially during the winter months. Several potential driving processes for the observed trends were studied, and even though there are some similarities between N trends and air temperature changes, the most likely cause of many northern hemisphere trends was found to be decreases in the anthropogenic emissions of primary particles, SO2 or some co-emitted species. We could not find a consistent agreement between the trends of N and particle optical properties in the few stations with long time series of all of these properties. The trends of N and the proxies for cloud condensation nuclei (CCN) were generally consistent in the few European stations where the measurements were available. This work provides a useful comparison analysis for modelling studies of trends in aerosol number concentrations.
  • Item
    Characterisation of a new Fast CPC and its application for atmospheric particle measurements
    (München : European Geopyhsical Union, 2011) Wehner, B.; Siebert, H.; Hermann, M.; Ditas, F.; Wiedensohler, A.
    A new Fast CPC (FCPC) using butanol as working fluid has been built based on the setup described by Wang et al. (2002). In this study, we describe the new instrument. The functionality and stable operation of the FCPC in the laboratory, as well as under atmospheric conditions, is demonstrated. The counting efficiency was measured for three temperature differences between FCPC saturator and condenser, 25, 27, and 29 K, subsequently resulting in a lower detection limit between 6.1 and 8.5 nm. Above 25 nm the FCPC reached 98–100% counting efficiency compared to an electrometer used as the reference instrument. The FCPC demonstrated its ability to perform continuous measurements over a few hours in the laboratory with respect to the total particle counting. The instrument has been implemented into the airborne measurement platform ACTOS to perform measurements in the atmospheric boundary layer. Therefore, a stable operation over two hours is required. The mixing time of the new FCPC was estimated in two ways using a time series with highly fluctuating particle number concentrations. The analysis of a sharp ramp due to a concentration change results in a mixing time of 5 ms while a spectral analysis of atmospheric data demonstrates that for frequencies up to 10 Hz coherent structures can be resolved before sampling noise dominates.
  • Item
    Multichannel analysis of correlation length of SEVIRI images around ground-based cloud observatories to determine their representativeness
    (München : European Geopyhsical Union, 2015) Slobodda, J.; Hünerbein, A.; Lindstrot, R.; Preusker, R.; Ebell, K.; Fischer, J.
    Images of measured radiance in different channels of the geostationary Meteosat-9 SEVIRI instrument are analysed with respect to the representativeness of the observations of eight cloud observatories in Europe (e.g. measurements from cloud radars or microwave radiometers). Cloudy situations are selected to get a time series for every pixel in a 300 km × 300 km area centred around each ground station. Then a cross correlation of each time series to the pixel nearest to the corresponding ground site is calculated. In the end a correlation length is calculated to define the representativeness. It is found that measurements in the visible and near infrared channels, which respond to cloud physical properties, are correlated in an area with a 1 to 4 km radius, while the thermal channels, that correspond to cloud top temperature, are correlated to a distance of about 20 km. This also points to a higher variability of the cloud microphysical properties inside a cloud than of the cloud top temperature. The correlation length even increases for the channels at 6.2, 7.3 and 9.7 μm. They respond to radiation from the upper atmospheric layers emitted by atmospheric gases and higher level clouds, which are more homogeneous than low-level clouds. Additionally, correlations at different distances, corresponding to the grid box sizes of forecast models, were compared. The results suggest the possibility of comparisons between instantaneous cloud observations from ground sites and regional forecast models and ground-based measurements. For larger distances typical for global models the correlations decrease, especially for short-wave measurements and corresponding cloud products. By comparing daily means, the correlation length of each station is increased to about 3 to 10 times the value of instantaneous measurements and also the comparability to models grows.
  • Item
    A complete representation of uncertainties in layer-counted paleoclimatic archives
    (München : European Geopyhsical Union, 2017) Boers, Niklas; Goswami, Bedartha; Ghil, Michael
    Accurate time series representation of paleoclimatic proxy records is challenging because such records involve dating errors in addition to proxy measurement errors. Rigorous attention is rarely given to age uncertainties in paleoclimatic research, although the latter can severely bias the results of proxy record analysis. Here, we introduce a Bayesian approach to represent layer-counted proxy records – such as ice cores, sediments, corals, or tree rings – as sequences of probability distributions on absolute, error-free time axes. The method accounts for both proxy measurement errors and uncertainties arising from layer-counting-based dating of the records. An application to oxygen isotope ratios from the North Greenland Ice Core Project (NGRIP) record reveals that the counting errors, although seemingly small, lead to substantial uncertainties in the final representation of the oxygen isotope ratios. In particular, for the older parts of the NGRIP record, our results show that the total uncertainty originating from dating errors has been seriously underestimated. Our method is next applied to deriving the overall uncertainties of the Suigetsu radiocarbon comparison curve, which was recently obtained from varved sediment cores at Lake Suigetsu, Japan. This curve provides the only terrestrial radiocarbon comparison for the time interval 12.5–52.8 kyr BP. The uncertainties derived here can be readily employed to obtain complete error estimates for arbitrary radiometrically dated proxy records of this recent part of the last glacial interval.
  • Item
    Abrupt transitions in time series with uncertainties
    (London : Nature Publishing Group, 2018) Goswami, B.; Boers, N.; Rheinwalt, A.; Marwan, N.; Heitzig, J.; Breitenbach, S.F.M.; Kurths, J.
    Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Niño-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an 'uncertainty-aware' framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon.
  • Item
    Survey vs Scraped Data: Comparing Time Series Properties of Web and Survey Vacancy Data
    (Berlin : Springer Nature, 2019) De Pedraza, P.; Visintin, S.; Tijdens, K.; Kismihók, G.
    This paper studies the relationship between a vacancy population obtained from web crawling and vacancies in the economy inferred by a National Statistics Office (NSO) using a traditional method. We compare the time series properties of samples obtained between 2007 and 2014 by Statistics Netherlands and by a web scraping company. We find that the web and NSO vacancy data present similar time series properties, suggesting that both time series are generated by the same underlying phenomenon: the real number of new vacancies in the economy. We conclude that, in our case study, web-sourced data are able to capture aggregate economic activity in the labor market.
  • Item
    Global temperature evolution: Recent trends and some pitfalls
    (Bristol : IOP Publishing, 2017) Rahmstorf, Stefan; Foster, Grant; Cahill, Niamh
    Global surface temperatures continue to rise. In most surface temperature data sets, the years 2014, 2015 and again 2016 set new global heat records since the start of regular measurements. Never before have three record years occurred in a row. We show that this recent streak of record heat does not in itself provide statistical evidence for an acceleration of global warming, nor was it preceded by a 'slowdown period' with a significantly reduced rate of warming. Rather, the data are fully consistent with a steady global warming trend since the 1970s, superimposed with random, stationary, short-term variability. All recent variations in short-term trends are well within what was to be expected, based on the observed warming trend and the observed variability from the 1970s up to the year 2000. We discuss some pitfalls of statistical analysis of global temperatures which have led to incorrect claims of an unexpected or significant warming slowdown.
  • Item
    Global gridded crop model evaluation: Benchmarking, skills, deficiencies and implications
    (München : European Geopyhsical Union, 2017) Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; Iizumi, Toshichika; Izaurralde, Roberto C.; Jones, Curtis; Khabarov, Nikolay; Lawrence, Peter; Liu, Wenfeng; Olin, Stefan; Pugh, Thomas A.M.; Ray, Deepak K.; Reddy, Ashwan; Rosenzweig, Cynthia; Ruane, Alex C.; Sakurai, Gen; Schmid, Erwin; Skalsky, Rastislav; Song, Carol X.; Wang, Xuhui; de Wit, Allard; Yang, Hong
    Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.
  • Item
    Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN
    (Amsterdam : Elsevier B.V., 2016) Soltwedel, T.; Bauerfeind, E.; Bergmann, M.; Bracher, A.; Budaeva, N.; Busch, K.; Cherkasheva, A.; Fahl, K.; Grzelak, K.; Hasemann, C.; Jacob, M.; Kraft, A.; Lalande, C.; Metfies, K.; Nöthig, E.-M.; Meyer, K.; Quéric, N.-V.; Schewe, I.; Włodarska-Kowalczuk, M.; Klages, M.
    Time-series studies of arctic marine ecosystems are rare. This is not surprising since polar regions are largely only accessible by means of expensive modern infrastructure and instrumentation. In 1999, the Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI) established the LTER (Long-Term Ecological Research) observatory HAUSGARTEN crossing the Fram Strait at about 79°N. Multidisciplinary investigations covering all parts of the open-ocean ecosystem are carried out at a total of 21 permanent sampling sites in water depths ranging between 250 and 5500 m. From the outset, repeated sampling in the water column and at the deep seafloor during regular expeditions in summer months was complemented by continuous year-round sampling and sensing using autonomous instruments in anchored devices (i.e., moorings and free-falling systems). The central HAUSGARTEN station at 2500 m water depth in the eastern Fram Strait serves as an experimental area for unique biological in situ experiments at the seafloor, simulating various scenarios in changing environmental settings. Long-term ecological research at the HAUSGARTEN observatory revealed a number of interesting temporal trends in numerous biological variables from the pelagic system to the deep seafloor. Contrary to common intuition, the entire ecosystem responded exceptionally fast to environmental changes in the upper water column. Major variations were associated with a Warm-Water-Anomaly evident in surface waters in eastern parts of the Fram Strait between 2005 and 2008. However, even after 15 years of intense time-series work at HAUSGARTEN, we cannot yet predict with complete certainty whether these trends indicate lasting alterations due to anthropologically-induced global environmental changes of the system, or whether they reflect natural variability on multiyear time-scales, for example, in relation to decadal oscillatory atmospheric processes.