Search Results

Now showing 1 - 2 of 2
  • Item
    Strong and ductile high temperature soft magnets through Widmanstätten precipitates
    ([London] : Nature Publishing Group UK, 2023) Han, Liuliu; Maccari, Fernando; Soldatov, Ivan; Peter, Nicolas J.; Souza Filho, Isnaldi R.; Schäfer, Rudolf; Gutfleisch, Oliver; Li, Zhiming; Raabe, Dierk
    Fast growth of sustainable energy production requires massive electrification of transport, industry and households, with electrical motors as key components. These need soft magnets with high saturation magnetization, mechanical strength, and thermal stability to operate efficiently and safely. Reconciling these properties in one material is challenging because thermally-stable microstructures for strength increase conflict with magnetic performance. Here, we present a material concept that combines thermal stability, soft magnetic response, and high mechanical strength. The strong and ductile soft ferromagnet is realized as a multicomponent alloy in which precipitates with a large aspect ratio form a Widmanstätten pattern. The material shows excellent magnetic and mechanical properties at high temperatures while the reference alloy with identical composition devoid of precipitates significantly loses its magnetization and strength at identical temperatures. The work provides a new avenue to develop soft magnets for high-temperature applications, enabling efficient use of sustainable electrical energy under harsh operating conditions.
  • Item
    Optical inter-site spin transfer probed by energy and spin-resolved transient absorption spectroscopy
    ([London] : Nature Publishing Group UK, 2020) Willems, Felix; von Korff Schmising, Clemens; Strüber, Christian; Schick, Daniel; Engel, Dieter W.; Dewhurst, J. K.; Elliott, Peter; Sharma, Sangeeta; Eisebitt, Stefan
    Optically driven spin transport is the fastest and most efficient process to manipulate macroscopic magnetization as it does not rely on secondary mechanisms to dissipate angular momentum. In the present work, we show that such an optical inter-site spin transfer (OISTR) from Pt to Co emerges as a dominant mechanism governing the ultrafast magnetization dynamics of a CoPt alloy. To demonstrate this, we perform a joint theoretical and experimental investigation to determine the transient changes of the helicity dependent absorption in the extreme ultraviolet spectral range. We show that the helicity dependent absorption is directly related to changes of the transient spin-split density of states, allowing us to link the origin of OISTR to the available minority states above the Fermi level. This makes OISTR a general phenomenon in optical manipulation of multi-component magnetic systems.