Search Results

Now showing 1 - 2 of 2
  • Item
    Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm
    (Amsterdam : Elsevier, 2016) van Vuuren, Detlef P.; Stehfest, Elke; Gernaat, David E.H.J.; Doelman, Jonathan C.; van den Berg, Maarten; Harmsen, Mathijs; de Boer, Harmen Sytze; Bouwman, Lex F.; Daioglou, Vassilis; Edelenbosch, Oreane Y.; Girod, Bastien; Kram, Tom; Lassaletta, Luis; Lucas, Paul L.; van Meijl, Hans; Müller, Christoph; van Ruijven, Bas J.; van der Sluis, Sietske; Tabeau, Andrzej
    This paper describes the possible developments in global energy use and production, land use, emissions and climate changes following the SSP1 storyline, a development consistent with the green growth (or sustainable development) paradigm (a more inclusive development respecting environmental boundaries). The results are based on the implementation using the IMAGE 3.0 integrated assessment model and are compared with a) other IMAGE implementations of the SSPs (SSP2 and SSP3) and b) the SSP1 implementation of other integrated assessment models. The results show that a combination of resource efficiency, preferences for sustainable production methods and investment in human development could lead to a strong transition towards a more renewable energy supply, less land use and lower anthropogenic greenhouse gas emissions in 2100 than in 2010, even in the absence of explicit climate policies. At the same time, climate policy would still be needed to reduce emissions further, in order to reduce the projected increase of global mean temperature from 3 Â°C (SSP1 reference scenario) to 2 or 1.5 Â°C (in line with current policy targets). The SSP1 storyline could be a basis for further discussions on how climate policy can be combined with achieving other societal goals.
  • Item
    Safe-by-Design part I: Proposal for nanospecific human health safety aspects needed along the innovation process
    (Amsterdam : Elsevier, 2020) Dekkers, S.; Wijnhoven, S.W.P.; Braakhuis, H.M.; Soeteman-Hernandez, L.G.; Sips, A.J.A.M.; Tavernaro, I.; Kraegeloh, A.; Noorlander, C.W.
    Safe-by-Design aims to reduce uncertainties and/or increase the human health and environmental safety from already early in the innovation process onwards and will thereby contribute to increased innovation efficiency, economic viability, interdisciplinary collaboration, consumers trust and improve sustainability. Since most innovators or designers are neither toxicologists nor risk assessors, considering human health safety aspects within their innovation process may be challenging. This paper provides sets of questions that can help innovators to assess nanospecific human health safety aspects of their product or material along the various stages of the innovation process. Addressing these questions will facilitate innovators to identify which type of information may support decisions on how to address potential human health risks in the innovation process. The identified information on the human health safety aspects can help innovators to decide if further investments in the product or material are beneficial. It may allow them to rank, prioritize and choose safer alternatives early in the innovation process. This may enable innovators to better anticipate on potential safety issues in an early stage, preventing these safety issues to become an innovation killer in a later stage of the innovation process. This approach to identify potential nanospecific human health risks should be considered as complementary to current regulations. The applicability of this approach was evaluated using a few industrial case studies. To determine if the approach is applicable to the innovation of a broader group of nanomaterials and nano-enabled products, more experience within various industrial sectors is needed.