3 results
Search Results
Now showing 1 - 3 of 3
- ItemChallenges and opportunities in mapping land use intensity globally(Amsterdam : Elsevier, 2013) Kuemmerle, Tobias; Erb, Karlheinz; Meyfroidt, Patrick; Müller, Daniel; Verburg, Peter H.; Estel, Stephan; Haberl, Helmut; Hostert, Patrick; Jepsen, Martin R.; Kastner, Thomas; Levers, Christian; Lindner, Marcus; Plutzar, Christoph; Verkerk, Pieter Johannes; van der Zanden, Emma H.; Reenberg, AnetteFuture increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly because we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major challenges and opportunities for mapping land use intensity for cropland, grazing, and forestry systems, and identify key issues for future research.
- ItemThe global technical potential of bio-energy in 2050 considering sustainability constraints(Amsterdam : Elsevier, 2010) Haberl, H.; Beringer, T.; Bhattacharya, S.C.; Erb, K.-H.; Hoogwijk, M.Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows. © 2010 Elsevier B.V.
- ItemIntegrating Life Cycle and Impact Assessments to Map Food's Cumulative Environmental Footprint(Amsterdam : Elsevier, 2020) Kuempel, Caitlin D.; Frazier, Melanie; Nash, Kirsty L.; Jacobsen, Nis Sand; Williams, David R.; Blanchard, Julia L.; Cottrell, Richard S.; McIntyre, Peter B.; Moran, Daniel; Bouwman, Lex; Froehlich, Halley E.; Gephart, Jessica A.; Metian, Marc; Többen, Johannes; Halpern, Benjamin S.Producing food exerts pressures on the environment. Understanding the location and magnitude of food production is key to reducing the impacts of these pressures on nature and people. In this Perspective, Kuempel et al. outline an approach for integrating life cycle assessment and cumulative impact mapping data and methodologies to map the cumulative environmental pressure of food systems. The approach enables quantification of current and potential future environmental pressures, which are needed to reduce the net impact of feeding humanity. © 2020 The AuthorsFeeding a growing, increasingly affluent population while limiting environmental pressures of food production is a central challenge for society. Understanding the location and magnitude of food production is key to addressing this challenge because pressures vary substantially across food production types. Applying data and models from life cycle assessment with the methodologies for mapping cumulative environmental impacts of human activities (hereafter cumulative impact mapping) provides a powerful approach to spatially map the cumulative environmental pressure of food production in a way that is consistent and comprehensive across food types. However, these methodologies have yet to be combined. By synthesizing life cycle assessment and cumulative impact mapping methodologies, we provide guidance for comprehensively and cumulatively mapping the environmental pressures (e.g., greenhouse gas emissions, spatial occupancy, and freshwater use) associated with food production systems. This spatial approach enables quantification of current and potential future environmental pressures, which is needed for decision makers to create more sustainable food policies and practices. © 2020 The Authors