Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Evaluation of the effective temperature change in Gd-based composite wires assessed by static and pulsed-field magnetic measurements

2021, Beyer, L., Weise, B., Freudenberger, J., Hufenbach, J.K., Gottschall, T., Krautz, M.

Gd cladded in a seamless 316L austenitic steel tube has been swaged into wires by the powder-in-tube (PIT) technology, resulting in an outer diameter of 1 mm, a wall thickness of approx. 100 µm and a filling factor of around 62 vol%. Such wires provide an advantageous geometry for heat exchangers and have the benefit to protect the Gadolinium, i.e. from corrosion when being in contact with a heat transfer fluid. The magnetocaloric composite has been studied by static and pulsed magnetic-field measurements in order to evaluate the performance of Gd as a core material. By the analysis of magnetization and heat capacity data, the influences of deformation-induced defects on Gadolinium are presented. The subsequent heat treatment at 773 K for 1 h in Ar atmosphere allowed restoring the magnetic properties of the wire after deformation. Data of the pulsed magnetic-field measurements on the Gd-filled PIT-wires and a Gd–core separated from the jacket are presented, with an achievable temperature change of 1.2 K for the wire and 5.2 K for the Gd in 2 T, respectively. A comparison to previously studied La(Fe, Co, Si)13-filled composite wires is included. It indicates that performance losses due to the passive matrix material cannot be overcome only by an increased adiabatic temperature change of the core material, but instead the wire components need to be chosen regarding an optimized heat capacity ratio, as well.

Loading...
Thumbnail Image
Item

Photocathode laser based bunch shaping for high transformer ratio plasma wakefield acceleration

2018, Loisch, G., Good, J., Gross, M., Huck, H., Isaev, I., Krasilnikov, M., Lishilin, O., Oppelt, A., Renier, Y., Stephan, F., Brinkmann, R., Grüner, F., Will, I.

Beam driven plasma acceleration is one of the most promising candidates for future compact particle accelerator technologies. In this scheme a particle bunch drives a wake in a plasma medium. The fields inside of the wake can be used to accelerate a trailing witness bunch. To maximise the ratio between acceleration of the witness to deceleration of the drive bunch, the so called transformer ratio, several methods have been proposed. The ones yielding the most favorable results are based on shaped drive bunches that are long in terms of the plasma wavelength. We present here methods to create such drive bunches employing temporally shaped UV-laser pulses for the extraction of electron bunches from a photo-electron gun. Theoretical considerations, experimental results and possibilities for further improvements are discussed.

Loading...
Thumbnail Image
Item

Knots, links, anyons and statistical mechanics of entangled polymer rings

2019, Ferrari, Franco, Paturej, Jarosław, Pia̧tek, Marcin, Zhao, Yani

The field theory approach to the statistical mechanics of a system of N polymer rings linked together is extended to the case of links whose paths in space are characterized by a fixed number 2s of maxima and minima. Such kind of links are called 2s-plats and appear for instance in the DNA of living organisms or in the wordlines of quasiparticles associated with vortices nucleated in a quasi-two-dimensional superfluid. The path integral theory describing the statistical mechanics of polymers subjected to topological constraints is mapped here into a field theory of quasiparticles (anyons). In the particular case of s=2, it is shown that this field theory admits vortex solutions with special self-dual points in which the interactions between the vortices vanish identically. The topological states of the link are distinguished using two topological invariants, namely the Gauss linking number and the so-called bridge number which is related to s. The Gauss linking number is a topological invariant that is relatively weak in distinguishing the different topological configurations of a general link. The addition of topological constraints based on the bridge number allows to get a glimpse into the non-abelian world of quasiparticles, which is relevant for important applications like topological quantum computing and high-TC superconductivity. At the end an useful connection with the cosh-Gordon equation is shown in the case s=2. © 2019

Loading...
Thumbnail Image
Item

JICG CMOS transistors for reduction of total ionizing dose and single event effects in a 130 nm bulk SiGe BiCMOS technology

2020, Sorge, R., Schmidt, J., Wipf, Ch., Reimer, F., Teply, F., Korndörfer, F.

We report on a novel radiation hardening by design (RHBD) approach for mitigation of total ionization dose (TID) induced drain leakage currents and single event transient (SET) in digital circuits fabricated in a 130 nm bulk SiGe BiCMOS technology. In order to avoid significant TID induced increase of drain leakage currents for NMOS transistors and channel pinch-off for PMOS transistors due to positive charges trapped at the lateral shallow trench insulator silicon interface we introduced junction isolation (JI) for the lateral MOS channel regions. The device construction measures applied also support to suppress the generation SETs. The tolerance of JI MOS transistors against TID induced drain leakage currents was verified up to a TID > 1.3 Mrad(Si). SET tests performed at four different inverter types varying in the arrangement the deep well in the layout. For CMOS inverters with isolated NMOS transistors a LET threshold > 130 MeV cm2 mg−1 was obtained.